Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuroscience ; 159(1): 31-8, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19138731

RESUMO

Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female pups, RH decreased NA activity in the OB, but 5-HT activity increased only in males. Since preference for the maternal odor involves the synergic action of NA and 5-HT in the OB, the maintenance of the behavior in RH males could be related to the increased 5-HT activity, in spite of reduction in the NA activity in the OB. RH did not alter CREB phosphorylation in the OB of both male and females compared with NH pups. The repeated handling procedure can affect the behavior of rat pups in response to the maternal odor and biochemical parameters related to the olfactory learning mechanism. Sex differences were already detected in 7-day-old pups. Although the responsiveness of the hypothalamic-pituitary-adrenal axis to stressors is reduced in the neonatal period, environmental interventions may impact behavioral and biochemical mechanisms relevant to the animal at that early age.


Assuntos
Monoaminas Biogênicas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Manobra Psicológica , Comportamento Materno , Odorantes , Bulbo Olfatório/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Cromatografia Líquida de Alta Pressão/métodos , Condicionamento Psicológico , Eletroquímica/métodos , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar , Fatores Sexuais , Transdução de Sinais/fisiologia
2.
Transl Psychiatry ; 7(1): e1005, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094810

RESUMO

Caregiver maltreatment induces vulnerability to later-life psychopathology. Clinical and preclinical evidence suggest changes in prefrontal and limbic circuitry underlie this susceptibility. We examined this question using a rat model of maternal maltreatment and methods translated from humans, resting-state functional magnetic resonance imaging (R-fMRI). Rat pups were reared by mothers provided with insufficient or abundant bedding for nest building from postnatal (PN) days 8 to 12 and underwent behavioral assessments of affect-related behaviors (forced swim, sucrose preference and social interaction) in adolescence (PN45) and early adulthood (PN60). R-fMRI sessions were conducted under light anesthesia at both ages. Offspring reared with insufficient bedding (that is, maltreated) displayed enduring negative affective behaviors. Amygdala-prefrontal cortex (PFC) functional connectivity increased significantly from adolescence to adulthood in controls, but not in maltreated animals. We computed the fractional amplitude of low-frequency fluctuations (fALFF), an index of intrinsic brain activity, and found that fALFF in medial prefrontal cortex and anterior cingulate cortex (MPFC/ACC) increased significantly with age in controls but remained unchanged in maltreated animals during adolescence and adulthood. We used a seed-based analysis to explore changes in functional connectivity between this region and the whole brain. Compared with controls, maltreated animals demonstrated reduced functional connectivity between MPFC/ACC and left caudate/putamen across both ages. Functional connectivity between MPFC/ACC and right caudate/putamen showed a group by age interaction: decreased in controls but increased in maltreated animals. These data suggest that maltreatment induces vulnerability to psychopathology and is associated with differential developmental trajectories of prefrontal and subcortical circuits underlying affect regulation.


Assuntos
Comportamento Animal , Encéfalo/fisiopatologia , Maus-Tratos Infantis , Comportamento Materno , Tonsila do Cerebelo/fisiopatologia , Animais , Animais Recém-Nascidos , Criança , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Long-Evans
3.
J Endocrinol ; 184(2): 435-45, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15684351

RESUMO

Neonatal handling induces anovulatory estrous cycles and decreases sexual receptivity in female rats. The synchronous secretion of hormones from the gonads (estradiol (E2) and progesterone (P)), pituitary (luteinizing (LH) and follicle-stimulating (FSH) hormones) and hypothalamus (LH-releasing hormone (LHRH)) are essential for the reproductive functions in female rats. The present study aimed to describe the plasma levels of E2 and P throughout the estrous cycle and LH, FSH and prolactin (PRL) in the afternoon of the proestrus, and the LHRH content in the medial preoptic area (MPOA), median eminence (ME) and medial septal area (MSA) in the proestrus, in the neonatal handled rats. Wistar pup rats were handled for 1 min during the first 10 days after delivery (neonatal handled group) or left undisturbed (nonhandled group). When they reached adulthood, blood samples were collected through a jugular cannula and the MPOA, ME and MSA were microdissected. Plasma levels of the hormones and the content of LHRH were determined by RIA. The number of oocytes counted in the morning of the estrus day in the handled rats was significantly lower than in the nonhandled ones. Neonatal handling reduces E2 levels only on the proestrus day while P levels decreased in metestrus and estrus. Handled females also showed reduced plasma levels of LH, FSH and PRL in the afternoon of the proestrus. The LHRH content in the MPOA was significantly higher than in the nonhandled group. The reduced secretion of E2, LH, FSH and LHRH on the proestrus day may explain the anovulatory estrous cycle in neonatal handled rats. The reduced secretion of PRL in the proestrus may be related to the decreased sexual receptiveness in handled females. In conclusion, early-life environmental stimulation can induce long-lasting effects on the hypothalamus-pituitary-gonad axis.


Assuntos
Animais Recém-Nascidos/fisiologia , Manobra Psicológica , Reprodução/fisiologia , Animais , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/análise , Hormônio Luteinizante/sangue , Eminência Mediana/química , Área Pré-Óptica/química , Proestro/sangue , Progesterona/sangue , Prolactina/sangue , Radioimunoensaio/métodos , Ratos , Ratos Wistar , Septo do Cérebro/química
4.
Genes Brain Behav ; 12(7): 673-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23927771

RESUMO

Attachment to an abusive caregiver has wide phylogenetic representation, suggesting that animal models are useful in understanding the neural basis underlying this phenomenon and subsequent behavioral outcomes. We previously developed a rat model, in which we use classical conditioning to parallel learning processes evoked during secure attachment (odor-stroke, with stroke mimicking tactile stimulation from the caregiver) or attachment despite adversity (odor-shock, with shock mimicking maltreatment). Here we extend this model to mice. We conditioned infant mice (postnatal day (PN) 7-9 or 13-14) with presentations of peppermint odor and either stroking or shock. We used (14) C 2-deoxyglucose (2-DG) to assess olfactory bulb and amygdala metabolic changes following learning. PN7-9 mice learned to prefer an odor following either odor-stroke or shock conditioning, whereas odor-shock conditioning at PN13-14 resulted in aversion/fear learning. 2-DG data indicated enhanced bulbar activity in PN7-9 preference learning, whereas significant amygdala activity was present following aversion learning at PN13-14. Overall, the mouse results parallel behavioral and neural results in the rat model of attachment, and provide the foundation for the use of transgenic and knockout models to assess the impact of both genetic (biological vulnerabilities) and environmental factors (abusive) on attachment-related behaviors and behavioral development.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico , Apego ao Objeto , Tonsila do Cerebelo/crescimento & desenvolvimento , Animais , Medo , Feminino , Aprendizagem , Masculino , Camundongos , Odorantes , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/fisiologia
5.
Braz J Med Biol Res ; 43(10): 914-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20835686

RESUMO

Infant rats must learn to identify their mother's diet-dependent odor. Once learned, maternal odor controls pups' approach to the mother, their social behavior and nipple attachment. Here we present a review of the research from four different laboratories, which suggests that neural and behavioral responses to the natural maternal odor and neonatal learned odors are similar. Together, these data indicate that pups have a unique learning circuit relying on the olfactory bulb for neural plasticity and on the hyperfunctioning noradrenergic locus coeruleus flooding the olfactory bulb with norepinephrine to support the neural changes. Another important factor making this system unique is the inability of the amygdala to become incorporated into the infant learning circuit. Thus, infant rats appear to be primed in early life to learn odors that will evoke approach responses supporting attachment to the caregiver.


Assuntos
Tonsila do Cerebelo/fisiologia , Sinais (Psicologia) , Aprendizagem por Discriminação/fisiologia , Comportamento Alimentar/fisiologia , Locus Cerúleo/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Plasticidade Neuronal/fisiologia , Norepinefrina/fisiologia , Ratos
6.
Braz. j. med. biol. res ; 43(10): 914-919, Oct. 2010. ilus
Artigo em Inglês | LILACS | ID: lil-561227

RESUMO

Infant rats must learn to identify their mother’s diet-dependent odor. Once learned, maternal odor controls pups’ approach to the mother, their social behavior and nipple attachment. Here we present a review of the research from four different laboratories, which suggests that neural and behavioral responses to the natural maternal odor and neonatal learned odors are similar. Together, these data indicate that pups have a unique learning circuit relying on the olfactory bulb for neural plasticity and on the hyperfunctioning noradrenergic locus coeruleus flooding the olfactory bulb with norepinephrine to support the neural changes. Another important factor making this system unique is the inability of the amygdala to become incorporated into the infant learning circuit. Thus, infant rats appear to be primed in early life to learn odors that will evoke approach responses supporting attachment to the caregiver.


Assuntos
Animais , Feminino , Ratos , Tonsila do Cerebelo/fisiologia , Sinais (Psicologia) , Aprendizagem por Discriminação/fisiologia , Comportamento Alimentar/fisiologia , Locus Cerúleo/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Animais Recém-Nascidos , Plasticidade Neuronal/fisiologia , Norepinefrina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA