Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 626(7999): 500-504, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356071

RESUMO

Magnetars are neutron stars with extremely high magnetic fields (≳1014 gauss) that exhibit various X-ray phenomena such as sporadic subsecond bursts, long-term persistent flux enhancements and variable rotation-period derivative1,2. In 2020, a fast radio burst (FRB), akin to cosmological millisecond-duration radio bursts, was detected from the Galactic magnetar SGR 1935+2154 (refs. 3-5), confirming the long-suspected association between some FRBs and magnetars. However, the mechanism for FRB generation in magnetars remains unclear. Here we report the X-ray observation of two glitches in SGR 1935+2154 within a time interval of approximately nine hours, bracketing an FRB that occurred on 14 October 20226,7. Each glitch involved a significant increase in the magnetar's spin frequency, being among the largest abrupt changes in neutron-star rotation8-10 observed so far. Between the glitches, the magnetar exhibited a rapid spin-down phase, accompanied by an increase and subsequent decline in its persistent X-ray emission and burst rate. We postulate that a strong, ephemeral, magnetospheric wind11 provides the torque that rapidly slows the star's rotation. The trigger for the first glitch couples the star's crust to its magnetosphere, enhances the various X-ray signals and spawns the wind that alters magnetospheric conditions that might produce the FRB.

2.
Nat Astron ; 6(7): 828-836, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35880202

RESUMO

The radio-emitting neutron star population encompasses objects with spin periods ranging from milliseconds to tens of seconds. As they age and spin more slowly, their radio emission is expected to cease. We present the discovery of an ultra-long period radio-emitting neutron star, PSR J0901-4046, with spin properties distinct from the known spin and magnetic-decay powered neutron stars. With a spin-period of 75.88 s, a characteristic age of 5.3 Myr, and a narrow pulse duty-cycle, it is uncertain how radio emission is generated and challenges our current understanding of how these systems evolve. The radio emission has unique spectro-temporal properties such as quasi-periodicity and partial nulling that provide important clues to the emission mechanism. Detecting similar sources is observationally challenging, which implies a larger undetected population. Our discovery establishes the existence of ultra-long period neutron stars, suggesting a possible connection to the evolution of highly magnetized neutron stars, ultra-long period magnetars, and fast radio bursts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA