Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nitric Oxide ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972538

RESUMO

In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.

2.
Funct Integr Genomics ; 23(2): 166, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202648

RESUMO

Dirigent proteins (DIRs) are a new class of proteins that were identified during the 8-8' lignan biosynthetic pathway and involves the formation of ( +) or ( -)-pinoresinol through stereoselective coupling from E-coniferyl alcohol. These proteins are known to play a vital role in the development and stress response in plants. Various studies have reported the functional and structural characterization of dirigent gene family in different plants using in silico approaches. Here, we have summarized the importance of dirigent proteins in plants and their role in plant stress tolerance by analyzing the genome-wide analysis including gene structure, mapping of chromosomes, phylogenetic evolution, conserved motifs, gene structure, and gene duplications in important plants. Overall, this review would help to compare and clarify the molecular and evolutionary characteristics of dirigent gene family in different plants.


Assuntos
Genoma , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Plantas/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas
3.
Mol Biol Rep ; 48(7): 5735-5743, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34304391

RESUMO

BACKGROUND: Zinc finger proteins encompass one of the unique and large families of proteins with diversified biological functions in the human body. These proteins are primarily considered to be DNA binding transcription factors; however, owing to the diverse array of zinc-finger domains, they are able to interact with molecules other than DNA like RNA, proteins, lipids and PAR (poly-ADP-ribose). Evidences from recent scientific studies have provided an insight into the potential functions of zinc finger proteins in immune system regulation both at the transcriptional and post transcriptional level. However, the mechanism and importance of zinc finger proteins in the regulation of immune response is not very well defined and understood. This review highlights in detail the importance of zinc finger proteins in the regulation of immune system at transcriptional and post transcriptional level. CONCLUSION: Different types of zinc finger proteins are involved in immune system regulation and their mechanism of regulation is discussed herewith.


Assuntos
Regulação da Expressão Gênica , Imunidade/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco , Humanos , RNA Mensageiro/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37997805

RESUMO

In recent years, dysregulation of the notch pathway has been associated with the development and progression of various cancers. Notch signaling is involved in several cellular processes such as proliferation, differentiation, apoptosis, and angiogenesis, and its abnormal activation can lead to uncontrolled cell growth and tumorigenesis. In various cancers, the Notch pathway has been shown to have both tumor-promoting and tumor-suppressive effects, depending on the context and stage of cancer development. In some cases, activation of the Notch pathway has been shown to promote tumor growth and progression, while in others it has been shown to inhibit tumor growth and induce cell death. The Notch pathway has been found to be particularly important in the development of leukaemia, breast cancer, lung cancer and pancreatic cancer. In leukaemia, the Notch pathway is often activated, which promotes the survival and proliferation of leukaemia cells. In breast cancer, Notch signaling has been implicated in tumor initiation and maintenance of cancer stem cells. In cervical cancer, the Notch signaling pathway has been shown to play a crucial role in the development of the disease. In lung cancer, Notch activation promotes cancer cell proliferation and migration, while in pancreatic cancer, Notch signaling is associated with tumor initiation and resistance to chemotherapy. Understanding the role of the Notch pathway in cancer development and progression may provide new opportunities for the development of targeted therapies for cancer treatment. Several drugs targeting the Notch pathway are currently in preclinical or clinical development and may hold promise for anticancer therapy in the future.

5.
Data Brief ; 27: 104657, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31737753

RESUMO

Boiling stable proteins are widespread, evolutionary conserved proteins from several kingdoms including plants, fungi and bacteria. Accumulation evidences in response to dehydration, suggest a wide spread adaptation and an evolutionary role of these protein families to protect cellular structures from water loss effects in a wide range of water potentials. Boiling stable proteins, although represents just 0.1% of total plant proteins, resist coagulation upon boiling and believed to be involved in water stress adaptation in plants. The present data profiles in-silico analysis of cloned boiling stable protein encoding gene wBsSRP from drought tolerant cultivar of wheat. The data presented here was of a gene isolated from total RNA/mRNA samples of wheat variety PBW 175 subjected to drought stress. The gene is available with EMBL data repository with accession number LN832556.

6.
Plant Physiol Biochem ; 112: 29-44, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28033539

RESUMO

The structural and physico-chemical properties that account for the multi-functionality of dehydrins remain largely unknown. In this study, we identified, sequenced and cloned a stress regulated cDNA encoding a dehydrin-like boiling stable protein (designated as wBsSRP; wheat boiling stable stress responsive protein) from drought stressed seedlings of drought tolerant cultivar of wheat (PBW 175). qRT-PCR analysis documented high transcripts levels of wBsSRP during drought and cold conditions in the tolerant cv. PBW 175 as a part of adaptive response to stress while the levels were significantly lower in the sensitive cv. PBW 343. We also describe in-silico characterization and molecular modeling of wBsSRP through homology search, motif analysis, secondary structure prediction, active site prediction and 3D structure analysis. The physico-chemical properties and theoretical data of wBsSRP depicts that it is a canonical group 2 LEA protein. The recombinant wBsSRP protein when expressed in E. coli detected a specific differential band (∼11 kDa) on SDS- PAGE after IPTG induction. The functional analysis of wBsSRP in E. coli revealed that wBsSRP is essential for the survival of E. coli as well as for maintaining bacterial growth under various stress conditions. In vitro peroxidase protection assay during heat stress (50 and 100 °C) showed that in the presence of wBsSRP, peroxidase activity was significantly retained and/or increased. Based upon the findings, it is suggested that wBsSRP accentuated the effects of stress by acting as a protectant and by the stabilization of membranes, thereby contributing to the improved stress tolerance of the recombinant E. coli under various abiotic stress conditions. We suggest that these findings might provide the rationale for the mechanism of how these proteins obviate the adverse effects of dehydration stress.


Assuntos
Adaptação Fisiológica , Simulação por Computador , Secas , Temperatura Alta , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Triticum/fisiologia , Algoritmos , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Moleculares , Peroxidase/metabolismo , Proteínas de Plantas/química , Mapeamento de Interação de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética/genética , Reprodutibilidade dos Testes , Análise de Sequência de Proteína , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA