Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 32(26)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33524955

RESUMO

In this article, the synthesis of phase pure iron pyrite nanocubes (FeS2NCs) and their various effects on the charge carrier dynamics and photovoltaic performances of P3HT:PC71BM based hybrid bulk-heterojunction solar cells have been studied. The optimum doping concentration of FeS2NCs was found to be 0.3 wt%. For the optimally doped devices, the short-circuit current density was found to have improved from 5.47 to 7.99 mA cm-2leading to an overall cell efficiency improvement from 2.10% to 3.22% as compared to the undoped reference devices. The enhancement in photovoltaic performance is mainly attributed to the formation of localized energy states near the band edges leading to higher carrier generation rate by 72% whereas carrier dissociation probability is also increased by 13%. Urbach energy estimation reveals that the optimally doped devices have achieved a relatively balanced amount of localized states resulting in reduced non-radiative recombination. Such localized defect states formation with FeS2NCs doping was also found to have significant influence over the charge carrier dynamics of the active layer. Transient photocurrent and photovoltage studies revealed that FeS2NCs assist in faster carrier extraction by reducing the transport time from 1.4 to 0.6µs and by enhancing carrier recombination time from 51.7 to 78.9µs for the reference and optimum devices respectively. Such an unorthodox approach of defect state assisted efficiency improvement demonstrates the importance of simultaneously understanding the charge carrier dynamics and photovoltaic performance for rational device optimization, and opens new prospects for developing high-efficiency solution processable hybrid devices.

2.
Nat Commun ; 15(1): 5058, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871682

RESUMO

In this study, high-performance organic photodetectors are presented which utilize a pristine chlorinated subphthalocyanine photoactive layer. Optical and optoelectronic analyses indicate that the device photocurrent is primarily generated through direct charge generation within the chlorinated subphthalocyanine layer, rather than exciton separation at layer interfaces. Molecular modelling suggests that this direct charge generation is facilitated by chlorinated subphthalocyanine high octupole moment (-80 DÅ2), which generates a 200 meV shift in molecular energetics. Increasing the thickness of chlorinated subphthalocyanine leads to faster response time, correlated with a decrease in trap density. Notably, photodetectors with a 50 nm thick chlorinated subphthalocyanine photoactive layer exhibit detectivities approaching 1013 Jones, with a dark current below 10-7 A cm-2 up to -5 V. Based on these findings, we conclude that high octupole moment molecular semiconductors are promising materials for high-performance organic photodetectors employing single-component photoactive layer.

3.
Adv Sci (Weinh) ; 10(17): e2206802, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097705

RESUMO

Herein, a new ternary strategy to fabricate efficient and photostable inverted organic photovoltaics (OPVs) is introduced by combining a bulk heterojunction (BHJ) blend and a fullerene self-assembled monolayer (C60 -SAM). Time-of-flight secondary-ion mass spectrometry - analysis reveals that the ternary blend is vertically phase separated with the C60 -SAM at the bottom and the BHJ on top. The average power conversion efficiency - of OPVs based on the ternary system is improved from 14.9% to 15.6% by C60 -SAM addition, mostly due to increased current density (Jsc ) and fill factor -. It is found that the C60 -SAM encourages the BHJ to make more face-on molecular orientation because grazing incidence wide-angle X-ray scattering - data show an increased face-on/edge-on orientation ratio in the ternary blend. Light-intensity dependent Jsc data and charge carrier lifetime analysis indicate suppressed bimolecular recombination and a longer charge carrier lifetime in the ternary system, resulting in the enhancement of OPV performance. Moreover, it is demonstrated that device photostability in the ternary blend is enhanced due to the vertically self-assembled C60 -SAM that successfully passivates the ZnO surface and protects BHJ layer from the UV-induced photocatalytic reactions of the ZnO. These results suggest a new perspective to improve both performance and photostability of OPVs using a facial ternary method.

4.
Nanoscale Adv ; 3(16): 4726-4738, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36134319

RESUMO

Herein, we report the first time application of waste plastic derived 3D graphene nanosheets (GNs) for hole transport material (HTM) free perovskite solar cells (PSCs), where 3D GNs have been employed as an electrode dopant material in monolithic carbon electrode based mesoscopic PSCs. Waste plastics were upcycled into high-quality 3D GNs by using two-step pyrolysis processes, where, a nickel (99.99%) metal mesh was taken as the catalytic and degradation template to get an acid free route for the synthesis of 3D GNs. Raman spectroscopy, HRTEM analysis and XRD analysis show the presence of 1-2 graphene layers within the 3D GNs. Further, the optical band gap study has also been performed to analyze the applicability of 3D GNs for PSCs. The optimized device with 3D GNs shows a power conversion efficiency (PCE) of 12.40%, whereas the carbon-based control device shows a PCE of 11.04%. Further, all other device parameters such as short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) have been improved with the addition of 3D GNs. The performance enhancement in 3D GN doped HTM free PSC solar cells is attributed to the enhancement in conductivity and reduced recombination within the device. Further, the photocurrent study shows that the 3D GN device shows better performance as compared to the reference device due to the larger diffusion current. Thus, the upcycling of waste plastics into 3D GNs and their exploitation for application in energy conversion show an effective and potential way to convert waste into energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA