RESUMO
Behaviors of photogenerated charge carriers and structural changes of water molecules on TiO2 photoelectrodes were investigated by using time-resolved visible to mid-IR absorption spectroscopy. From the spectra measured in the visible to NIR region, it was shown that the lifetime of trapped electrons and holes becomes longer upon applying more positive potentials. This result was reasonably explained by the enhancement of the upward band bending at the water/TiO2 interface. On the other hand, from the spectra measured in the mid-IR region, structural changes of the water molecules were observed. When a TiO2 electrode was photoexcited at the potential where the water oxidation starts, a new absorption peak appeared at 3620 cm-1 with a slight decrease in the intensity of hydrogen-bonded water. This new peak was assigned to the isolated O-H band of water molecules. Usually, TiO2 surfaces exhibit super-hydrophilic properties with strong hydrogen-bonding; however, the obtained result was opposite. Therefore, the appearance of this isolated O-H band was ascribed to the cleavage of the hydrogen-bonding networks resulting from the production of reaction intermediates such as OH radicals or H2O2. The intensity of the isolated O-H decreases when applying more positive potentials, where the O2 evolution proceeds more efficiently. This could be ascribed to the rapid consumption of the reaction intermediates. At these potentials, the intensity of hydrogen-bonded water was also further decreased.
RESUMO
A family of first-generation dendrimers containing 3,5-bis(carbazolyl)phenyl dendrons attached to a green emissive fac-tris(2-phenylpyridyl)iridium(III) core were prepared. The solubility of the dendrimers was imparted by the attachment of tert-butyl surface groups to the carbazole moieties. The dendrimers differed in the number of dendrons attached to each ligand (one or two dendrons) as well as the degree of rotational restriction within the dendrons. The densities of the films containing the doubly dendronized materials were higher than those of their mono-dendronized counterparts, with the dendrimer containing two rotationally constrained dendrons per ligand having the highest density at 1.12 ± 0.04 g cm-3. The dendrimers were found to have high photoluminescence quantum yields (PLQYs) in solution of between 80 and 90%, with the doubly dendronized materials having the lower values and a red-shifted emission. The neat film PLQY values of the dendrimers were less than those measured in solution although the relative decrease was smaller for the doubly dendronized materials. The dendrimers were incorporated into solution-processed bilayer organic light-emitting diodes (OLEDs) composed of neat or blend emissive layers and an electron transport layer. The best-performing devices had the dendrimers blended with a host material and external quantum efficiencies as high as 14.0%, which is higher than previously reported results for carbazole-incorporating emissive dendrimers. A feature of the devices containing blends of the doubly dendronized materials was that the maximum efficiency was relatively insensitive to the concentration in the host between 1 and 7 mol %.
RESUMO
Efficient and stable perovskite solar cells with a simple active layer are desirable for manufacturing. Three-dimensional perovskite solar cells are most efficient but need to have improved environmental stability. Inclusion of larger ammonium salts has led to a trade-off between improved stability and efficiency, which is attributed to the perovskite films containing a two-dimensional component. Here, we show that addition of 0.3 mole percent of a fluorinated lead salt into the three-dimensional methylammonium lead iodide perovskite enables low temperature fabrication of simple inverted solar cells with a maximum power conversion efficiency of 21.1%. The perovskite layer has no detectable two-dimensional component at salt concentrations of up to 5 mole percent. The high concentration of fluorinated material found at the film-air interface provides greater hydrophobicity, increased size and orientation of the surface perovskite crystals, and unencapsulated devices with increased stability to high humidity.
RESUMO
Infrared-light-induced carrier transfer is a key technology for 'invisible' optical devices for information communication systems and energy devices. However, clear and colourless photo-induced carrier transfer has not yet been demonstrated in the field of photochemistry, to the best of our knowledge. Here, we resolve this problem by employing short-wavelength-infrared (1400-4000 nm) localized surface plasmon resonance-induced electron injection from indium tin oxide nanocrystals to transparent metal oxides. The time-resolved infrared measurements visualize the dynamics of the carrier in this invisible system. Selective excitation of localized surface plasmon resonances causes hot electron injection with high efficiency (33%) and long-lived charge separation (~ 2-200 µs). We anticipate our study not only provides a breakthrough for plasmonic carrier transfer systems but may also stimulate the invention of state-of-the-art invisible optical devices.
Assuntos
Raios Infravermelhos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Fotoquímica , Ressonância de Plasmônio de Superfície , Compostos de Estanho/química , Compostos de Estanho/efeitos da radiação , Cinética , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Fenômenos Físicos , Dióxido de Silício/química , Espectroscopia de Luz Próxima ao Infravermelho , Propriedades de SuperfícieRESUMO
The original version of this Article omitted the fourth author Taizo Yoshinaga, who is from the 'Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan'. Consequently, the third sentence of the Author Contributions, 'M.S. and M.K. synthesized the ITO NCs and ITO/semiconductor oxides' was revised to 'M.S., M.K. and T.Y. synthesized the ITO NCs and ITO/semiconductor oxides'. This has been corrected in both the PDF and HTML versions of the Article.
RESUMO
Metal-complex/semiconductor hybrids have attracted attention as photocatalysts for visible-light CO2 reduction, and electron transfer from the metal complex to the semiconductor is critically important to improve the performance. Here rutile TiO2 nanoparticles having 5-10 nm in size were employed as modifiers to improve interfacial charge transfer between semiconducting carbon nitride nanosheets (NS-C3N4) and a supramolecular Ru(II)-Re(I) binuclear complex (RuRe). The RuRe/TiO2/NS-C3N4 hybrid was capable of photocatalyzing CO2 reduction into CO with high selectivity under visible light (λ > 400 nm), outperforming an analogue without TiO2 by a factor of 4, in terms of both CO formation rate and turnover number (TON). The enhanced photocatalytic activity was attributed primarily to prolonged lifetime of free and/or shallowly trapped electrons generated in TiO2/NS-C3N4 under visible-light irradiation, as revealed by transient absorption spectroscopy. Experimental results also indicated that the TiO2 modifier served as a good adsorption site for RuRe, which resulted in the suppression of undesirable desorption of the complex, thereby contributing to the improved photocatalytic performance. This study presents the first successful example of interfacial manipulation in a metal-complex/semiconductor hybrid photocatalyst for improved visible-light CO2 reduction to produce CO.