Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Virol ; 97(3): e0128422, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36786601

RESUMO

The three genomic and a single subgenomic RNA of Cowpea chlorotic mottle virus (CCMV), which is pathogenic to plants, is packaged into three morphologically indistinguishable icosahedral virions with T=3 symmetry. The two virion types, C1V and C2V, package genomic RNAs 1 (C1) and 2 (C2), respectively. The third virion type, C3+4V, copackages genomic RNA3 and its subgenomic RNA (RNA4). In this study, we sought to evaluate how the alteration of native capsid dynamics by the host and viral replicase modulate the general biology of the virus. The application of a series of biochemical, molecular, and biological assays revealed the following. (i) Proteolytic analysis of the three virion types of CCMV assembled individually in planta revealed that, while retaining the structural integrity, C1V and C2V virions released peptide regions encompassing the N-terminal arginine-rich RNA binding motif. In contrast, a minor population of the C3+4V virion type was sensitive to trypsin-releasing peptides encompassing the entire capsid protein region. (ii) The wild-type CCMV virions purified from cowpea are highly susceptible to trypsin digestion, while those from Nicotiana benthamiana remained resistant, and (iii) finally, the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis evaluated the relative dynamics of C3+4V and B3+4V virions assembled under the control of the homologous versus heterologous replicase. The role of viral replicase in modulating the capsid dynamics was evident by the differential sensitivity to protease exhibited by B3+4V and C3+4V virions assembled under the homologous versus heterologous replicase. Our results collectively conclude that constant modulation of capsid dynamics by the host and viral replicase is obligatory for successful infection. IMPORTANCE Infectious virus particles or virions are considered static structures and undergo various conformational transitions to replicate and infect many eukaryotic cells. In viruses, conformational changes are essential for establishing infection and evolution. Although viral capsid fluctuations, referred to as dynamics or breathing, have been well studied in RNA viruses pathogenic to animals, such information is limited among plant viruses. The primary focus of this study is to address how capsid dynamics of plant-pathogenic RNA viruses, namely, Cowpea chlorotic mottle (CCMV) and Brome mosaic virus (BMV), are modulated by the host and viral replicase. The results presented have improved and transformed our understanding of the functional relationship between capsid dynamics and the general biology of the virus. They are likely to provide stimulus to extend similar studies to viruses pathogenic to eukaryotic organisms.


Assuntos
Bromovirus , Capsídeo , Interações entre Hospedeiro e Microrganismos , Plantas , Proteínas do Complexo da Replicase Viral , Bromovirus/enzimologia , Bromovirus/genética , Capsídeo/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Plantas/virologia , RNA Viral/genética , RNA Viral/metabolismo , Tripsina/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo , RNA Subgenômico
2.
Proc Natl Acad Sci U S A ; 117(20): 10673-10680, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358197

RESUMO

We report the asymmetric reconstruction of the single-stranded RNA (ssRNA) content in one of the three otherwise identical virions of a multipartite RNA virus, brome mosaic virus (BMV). We exploit a sample consisting exclusively of particles with the same RNA content-specifically, RNAs 3 and 4-assembled in planta by agrobacterium-mediated transient expression. We find that the interior of the particle is nearly empty, with most of the RNA genome situated at the capsid shell. However, this density is disordered in the sense that the RNA is not associated with any particular structure but rather, with an ensemble of secondary/tertiary structures that interact with the capsid protein. Our results illustrate a fundamental difference between the ssRNA organization in the multipartite BMV viral capsid and the monopartite bacteriophages MS2 and Qß for which a dominant RNA conformation is found inside the assembled viral capsids, with RNA density conserved even at the center of the particle. This can be understood in the context of the differing demands on their respective lifecycles: BMV must package separately each of several different RNA molecules and has been shown to replicate and package them in isolated, membrane-bound, cytoplasmic complexes, whereas the bacteriophages exploit sequence-specific "packaging signals" throughout the viral RNA to package their monopartite genomes.


Assuntos
Bacteriófagos/genética , Proteínas do Capsídeo/metabolismo , Genoma Viral , RNA Viral/metabolismo , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Bromovirus/genética , Bromovirus/metabolismo , Bromovirus/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , RNA Viral/genética
3.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996436

RESUMO

Viral capsids are dynamic assemblies that undergo controlled conformational transitions to perform various biological functions. The replication-derived four-molecule RNA progeny of Brome mosaic virus (BMV) is packaged by a single capsid protein (CP) into three types of morphologically indistinguishable icosahedral virions with T=3 quasisymmetry. Type 1 (B1V) and type 2 (B2V) virions package genomic RNA1 and RNA2, respectively, while type 3 (B3+4V) virions copackage genomic RNA3 (B3) and its subgenomic RNA4 (sgB4). In this study, the application of a robust Agrobacterium-mediated transient expression system allowed us to assemble each virion type separately in planta Experimental approaches analyzing the morphology, size, and electrophoretic mobility failed to distinguish between the virion types. Thermal denaturation analysis and protease-based peptide mass mapping experiments were used to analyze stability and the conformational dynamics of the individual virions, respectively. The crystallographic structure of the BMV capsid shows four trypsin cleavage sites (K65, R103, K111, and K165 on the CP subunits) exposed on the exterior of the capsid. Irrespective of the digestion time, while retaining their capsid structural integrity, B1V and B2V released a single peptide encompassing amino acids 2 to 8 of the N-proximal arginine-rich RNA binding motif. In contrast, B3+4V capsids were unstable with trypsin, releasing several peptides in addition to the peptides encompassing four predicted sites exposed on the capsid exterior. These results, demonstrating qualitatively different dynamics for the three types of BMV virions, suggest that the different RNA genes they contain may have different translational timing and efficiency and may even impart different structures to their capsids.IMPORTANCE The majority of viruses contain RNA genomes protected by a shell of capsid proteins. Although crystallographic studies show that viral capsids are static structures, accumulating evidence suggests that, in solution, virions are highly dynamic assemblies. The three genomic RNAs (RNA1, -2, and -3) and a single subgenomic RNA (RNA4) of Brome mosaic virus (BMV), an RNA virus pathogenic to plants, are distributed among three physically homogeneous virions. This study examines the thermal stability by differential scanning fluorimetry (DSF) and capsid dynamics by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analyses following trypsin digestion of the three virions assembled separately in vivo using the Agrobacterium-mediated transient expression approach. The results provide compelling evidence that virions packaging genomic RNA1 and -2 are distinct from those copackaging RNA3 and -4 in their stability and dynamics, suggesting that RNA-dependent capsid dynamics play an important biological role in the viral life cycle.


Assuntos
Bromovirus/metabolismo , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Vírion/metabolismo , Montagem de Vírus/fisiologia , Agrobacterium/genética , Bromovirus/genética , Proteínas do Capsídeo/genética , Genoma Viral , Mapeamento de Peptídeos , RNA Bacteriano , RNA Viral/genética , Vírion/genética , Montagem de Vírus/genética , Replicação Viral
4.
Phytopathology ; 110(1): 228-236, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31411546

RESUMO

A hallmark feature of (+)-strand RNA viruses of eukaryotic cells is that progeny (+)-strands are accumulated 100-fold over (-)-strands. Previous experimental evidence suggests that, in Brome mosaic virus (BMV), a plant-infecting member of the alphavirus-like superfamily, the addition of RNA3 and, specifically, translation of the wild-type (WT) coat protein (CP) gene contributes to increased accumulation of (+)-strands. It is unclear whether this stimulation of (+)-strand accumulation by CP is due to direct regulation of viral RNA replication or RNA stabilization via encapsidation. Analysis of BMV progeny RNA in Nicotiana benthamiana plants revealed that expression of RNA3 variants that did not express WT CP led to a severe defect in BMV (+)-strand accumulation. The (+)-strand accumulation could be rescued when CP was complemented in trans. To verify whether stimulation of (+)-strand accumulation is coupled with encapsidation, two independent mutations were engineered into CP open reading frames. An N-terminal deletion that prevented CP binding to the viral RNAs resulted in a severe reduction of BMV (+)-strand accumulation but stimulated (-)-strand accumulation over the WT. On the other hand, a C-terminal mutation affecting CP dimerization caused a significant decrease in (+)-strand accumulation but had no detectable effect on (-)-strand accumulation. Nucleotide sequences in the movement protein-coding region were also found to contribute to (+)-strand accumulation, in part by providing packaging signals for efficient RNA3 encapsidation. Overall, these results show that RNA encapsidation is a significant determinant of BMV RNA intracellular accumulation.


Assuntos
Bromovirus , Proteínas do Capsídeo , Nicotiana , Doenças das Plantas , Bromovirus/fisiologia , Proteínas do Capsídeo/genética , Doenças das Plantas/virologia , RNA Viral/genética , Nicotiana/virologia , Replicação Viral
5.
J Virol ; 88(4): 1890-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284314

RESUMO

Replication of the satellite RNA (satRNA) of Cucumber Mosaic Virus is dependent on replicase proteins of helper virus (HV). However, we recently demonstrated that like with Potato spindle tuber viroid (PSTVd), a satRNA associated with Cucumber Mosaic Virus strain Q (Q-satRNA) has the propensity to localize in the nucleus and generate multimers that subsequently serve as templates for HV-dependent replication. But the mechanism regulating the nuclear importation of Q-satRNA is unknown. Here we show that the nuclear importation of Q-satRNA is mediated by a bromodomain-containing host protein (BRP1), which is also apparently involved in the nuclear localization of PSTVd. A comparative analysis of nuclear and cytoplasmic fractions from Nicotiana benthamiana plants coinfected with Q-satRNA and its HV confirmed the association of Q-satRNA but not HV with the nuclear compartment. A combination of the MS2-capsid protein-based RNA tagging assay and confocal microscopy demonstrated that the nuclear localization of Q-satRNA was completely blocked in transgenic lines of Nicotiana benthamiana (ph5.2nb) that are defective in BRP1 expression. This defect, however, was restored when the ph5.2nb lines of N. benthamiana were trans-complemented by ectopically expressed BRP1. The binding specificity of BRP1 with Q-satRNA was confirmed in vivo and in vitro by coimmunoprecipitation and electrophoretic mobility shift assays, respectively. Finally, infectivity assays involving coexpression of Q-satRNA and its HV in wild-type and ph5.2nb lines of N. benthamiana accentuated a biological role for BRP1 in the Q-satRNA infection cycle. The significance of these results in relation to a possible evolutionary relationship to viroids is discussed.


Assuntos
Núcleo Celular/genética , Cucumovirus/genética , Nicotiana/virologia , RNA Satélite/genética , Transporte Ativo do Núcleo Celular/genética , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Immunoblotting , Imunoprecipitação , Microscopia Confocal , Proteínas Nucleares/genética , Frações Subcelulares
7.
J Biol Phys ; 41(2): 135-49, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25515930

RESUMO

A biomimetic minimalist model membrane was used to study the mechanism and kinetics of cell-free in vitro HIV-1 Gag budding from a giant unilamellar vesicle (GUV). Real-time interaction of Gag, RNA, and lipid, leading to the formation of mini-vesicles, was measured using confocal microscopy. Gag forms resolution-limited punctae on the GUV lipid membrane. Introduction of the Gag and urea to a GUV solution containing RNA led to the budding of mini-vesicles on the inside surface of the GUV. The GUV diameter showed a linear decrease in time due to bud formation. Both bud formation and decrease in GUV size were proportional to Gag concentration. In the absence of RNA, addition of urea to GUVs incubated with Gag also resulted in subvesicle formation. These observations suggest the possibility that clustering of GAG proteins leads to membrane invagination even in the absence of host cell proteins. The method presented here is promising, and allows for systematic study of the dynamics of assembly of immature HIV and help classify the hierarchy of factors that impact the Gag protein initiated assembly of retroviruses such as HIV.


Assuntos
HIV-1/fisiologia , Lipossomas Unilamelares/metabolismo , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/virologia , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Cinética , RNA Viral/metabolismo , Ureia/farmacologia , Liberação de Vírus/efeitos dos fármacos
8.
J Virol ; 87(16): 8982-92, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23741003

RESUMO

Positive-strand RNA viruses are known to rearrange the endomembrane network to make it more conducive for replication, maturation, or egress. Our previous transmission electron microscopic (TEM) analysis showed that ectopic expression of wild-type (wt) capsid protein (CP) of Brome mosaic virus (BMV) has an intrinsic property of modifying the endoplasmic reticulum (ER) to induce vesicles similar to those present in wt BMV infection. In this study, we evaluated the functional significance of CP-mediated vesicle induction to the BMV infection cycle in planta. Consequently, the cytopathologic changes induced by wt CP or its mutants defective in virion assembly due to mutations engineered in either N- or C-proximal domains were comparatively analyzed by TEM in two susceptible (Nicotiana benthamiana and Chenopodium quinoa) and one nonhost (N. clevelandii) plant species. The results showed that in susceptible hosts, CP-mediated ER-derived vesicle induction is contingent on the expression of encapsidation-competent CP. In contrast, unlike in N. benthamiana and C. quinoa, transient expression of wt CP in nonhost N. clevelandii plants eliminated vesicle induction. Additionally, comparative source-to-sink analysis of virus spread in leaves of N. benthamiana and N. clevelandii coexpressing wt BMV and Cucumber mosaic virus (CMV) showed that despite trans-encapsidation, CMV failed to complement the defective cell-to-cell movement of BMV. The significance and relation of CP-mediated vesicle induction to virus cell-to-cell movement are discussed.


Assuntos
Bromovirus/fisiologia , Proteínas do Capsídeo/metabolismo , Montagem de Vírus , Liberação de Vírus , Bromovirus/genética , Proteínas do Capsídeo/genética , Chenopodium quinoa/virologia , Análise Mutacional de DNA , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Microscopia Eletrônica de Transmissão , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nicotiana/virologia
9.
J Virol ; 86(9): 5204-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357282

RESUMO

Despite overwhelming interest in the impact exerted by recombination during evolution of RNA viruses, the relative contribution of the polarity of inoculum templates remains poorly understood. Here, by agroinfiltrating Nicotiana benthamiana leaves, we show that brome mosaic virus (BMV) replicase is competent to initiate positive-strand [(+)-strand] synthesis on an ectopically expressed RNA3 negative strand [(-) strand] and faithfully complete the replication cycle. Consequently, we sought to examine the role of RNA polarity in BMV recombination by expressing a series of replication-defective mutants of BMV RNA3 in (+) or (-) polarity. Temporal analysis of progeny sequences revealed that the genetic makeup of the primary recombinant pool is determined by the polarity of the inoculum template. When the polarity of the inoculum template was (+), the recombinant pool that accumulated during early phases of replication was a mixture of nonhomologous recombinants. These are longer than the inoculum template length, and a nascent 3' untranslated region (UTR) of wild-type (WT) RNA1 or RNA2 was added to the input mutant RNA3 3' UTR due to end-to-end template switching by BMV replicase during (-)-strand synthesis. In contrast, when the polarity of the inoculum was (-), the progeny contained a pool of native-length homologous recombinants generated by template switching of BMV replicase with a nascent UTR from WT RNA1 or RNA2 during (+)-strand synthesis. Repair of a point mutation caused by polymerase error occurred only when the polarity of the inoculum template was (+). These results contribute to the explanation of the functional role of RNA polarity in recombination mediated by copy choice mechanisms.


Assuntos
Bromovirus/genética , RNA Viral/genética , Vírus Reordenados/genética , Regiões 3' não Traduzidas , Sequência de Bases , Bromovirus/metabolismo , Ordem dos Genes , Vetores Genéticos/genética , Instabilidade Genômica , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Moldes Genéticos , Nicotiana/virologia , Replicação Viral/genética
10.
J Virol ; 86(11): 6210-21, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22438552

RESUMO

Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity.


Assuntos
Proteínas do Capsídeo/metabolismo , Nodaviridae/fisiologia , Mapeamento de Interação de Proteínas , RNA Polimerase Dependente de RNA/metabolismo , Montagem de Vírus , Proteínas do Capsídeo/genética , Imunoprecipitação , Microscopia de Fluorescência , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Deleção de Sequência , Nicotiana/virologia
11.
J Virol ; 86(9): 4823-32, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22379080

RESUMO

Satellite RNAs are the smallest infectious agents whose replication is thought to be completely dependent on their helper virus (HV). Here we report that, when expressed autonomously in the absence of HV, a variant of satellite RNA (satRNA) associated with Cucumber mosaic virus strain Q (Q-satRNA) has a propensity to localize in the nucleus and be transcribed, generating genomic and antigenomic multimeric forms. The involvement of the nuclear phase of Q-satRNA was further confirmed by confocal microscopy employing in vivo RNA-tagging and double-stranded-RNA-labeling assays. Sequence analyses revealed that the Q-satRNA multimers formed in the absence of HV, compared to when HV is present, are distinguished by the addition of a template-independent heptanucleotide motif at the monomer junctions within the multimers. Collectively, the involvement of a nuclear phase in the replication cycle of Q-satRNA not only provides a valid explanation for its persistent survival in the absence of HV but also suggests a possible evolutionary relationship to viroids that replicate in the nucleus.


Assuntos
Cucumovirus/genética , Vírus Auxiliares/metabolismo , RNA Satélite/genética , RNA Satélite/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Sequência de Bases , Núcleo Celular/metabolismo , Cucumovirus/metabolismo , Conformação de Ácido Nucleico , Transporte de RNA , RNA Satélite/química
12.
J Virol ; 86(22): 12271-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22951822

RESUMO

While most T=3 single-stranded RNA (ssRNA) viruses package in vivo about 3,000 nucleotides (nt), in vitro experiments have demonstrated that a broad range of RNA lengths can be packaged. Under the right solution conditions, for example, cowpea chlorotic mottle virus (CCMV) capsid protein (CP) has been shown to package RNA molecules whose lengths range from 100 to 10,000 nt. Furthermore, in each case it can package the RNA completely, as long as the mass ratio of CP to nucleic acid in the assembly mixture is 6:1 or higher. Yet the packaging efficiencies of the RNAs can differ widely, as we demonstrate by measurements in which two RNAs compete head-to-head for a limited amount of CP. We show that the relative efficiency depends nonmonotonically on the RNA length, with 3,200 nt being optimum for packaging by the T=3 capsids preferred by CCMV CP. When two RNAs of the same length-and hence the same charge-compete for CP, differences in packaging efficiency are necessarily due to differences in their secondary structures and/or three-dimensional (3D) sizes. For example, the heterologous RNA1 of brome mosaic virus (BMV) is packaged three times more efficiently by CCMV CP than is RNA1 of CCMV, even though the two RNAs have virtually identical lengths. Finally, we show that in an assembly mixture at neutral pH, CP binds reversibly to the RNA and there is a reversible equilibrium between all the various RNA/CP complexes. At acidic pH, excess protein unbinds from RNA/CP complexes and nucleocapsids form irreversibly.


Assuntos
Bromovirus/genética , Capsídeo/química , RNA/metabolismo , Ligação Competitiva , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Microscopia Eletrônica de Transmissão/métodos , Modelos Genéticos , Ligação Proteica , Ribonucleases/metabolismo , Espectrometria de Fluorescência/métodos , Proteínas Virais , Vírion/genética , Montagem de Vírus
13.
J Virol ; 86(6): 3318-26, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22205731

RESUMO

Virus-like particles can be formed by self-assembly of capsid protein (CP) with RNA molecules of increasing length. If the protein "insisted" on a single radius of curvature, the capsids would be identical in size, independent of RNA length. However, there would be a limit to length of the RNA, and one would not expect RNA much shorter than native viral RNA to be packaged unless multiple copies were packaged. On the other hand, if the protein did not favor predetermined capsid size, one would expect the capsid diameter to increase with increase in RNA length. Here we examine the self-assembly of CP from cowpea chlorotic mottle virus with RNA molecules ranging in length from 140 to 12,000 nucleotides (nt). Each of these RNAs is completely packaged if and only if the protein/RNA mass ratio is sufficiently high; this critical value is the same for all of the RNAs and corresponds to equal RNA and N-terminal-protein charges in the assembly mix. For RNAs much shorter in length than the 3,000 nt of the viral RNA, two or more molecules are assembled into 24- and 26-nm-diameter capsids, whereas for much longer RNAs (>4,500 nt), a single RNA molecule is shared/packaged by two or more capsids with diameters as large as 30 nm. For intermediate lengths, a single RNA is assembled into 26-nm-diameter capsids, the size associated with T=3 wild-type virus. The significance of these assembly results is discussed in relation to likely factors that maintain T=3 symmetry in vivo.


Assuntos
Bromovirus/fisiologia , Proteínas do Capsídeo/metabolismo , RNA Viral/metabolismo , Montagem de Vírus , Bromovirus/química , Bromovirus/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Fabaceae/virologia , Doenças das Plantas/virologia , RNA Viral/química , RNA Viral/genética
14.
J Virol ; 85(6): 2953-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21209103

RESUMO

Genome packaging in the plant-infecting Brome mosaic virus (BMV), a member of the alphavirus-like superfamily, as well as in other positive-strand RNA viruses pathogenic to humans (e.g., poliovirus) and animals (e.g., Flock House virus), is functionally coupled to replication. Although the subcellular localization site of BMV replication has been identified, that of the capsid protein (CP) has remained elusive. In this study, the application of immunofluorescence confocal microscopy to Nicotiana benthamiana leaves expressing replication-derived BMV CP as a green fluorescent protein (GFP) fusion, in conjunction with antibodies to the CP and double-stranded RNA, a presumed marker of RNA replication, revealed that the subcellular localization sites of replication and CP overlap. Our temporal analysis by transmission electron microscopy of ultrastructural modifications induced in BMV-infected N. benthamiana leaves revealed a reticulovesicular network of modified endoplasmic reticulum (ER) incorporating large assemblies of vesicles derived from ER accumulated in the cytoplasm during BMV infection. Additionally, for the first time, we have found by ectopic expression experiments that BMV CP itself has the intrinsic property of modifying ER to induce vesicles similar to those present in BMV infections. The significance of CP-induced vesicles in relation to CP-organized viral functions that are linked to replication-coupled packaging is discussed.


Assuntos
Bromovirus/fisiologia , Proteínas do Capsídeo/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Montagem de Vírus , Proteínas do Capsídeo/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Folhas de Planta/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/virologia
15.
Methods Mol Biol ; 2170: 213-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32797461

RESUMO

Protein-protein interactions (PPI) are vital in regulating the biological and physiological functions in a given cell or organism. Proteomics, in conjunction with bioinformatic tools, represents the study involving the characterization of the protein content of the genome of a given biological system. Like PPI, an interaction between either coding or noncoding RNA and a complex set of host proteins protein plays an essential role in gene expression at translational, posttranscriptional, and epigenetic level. Although a wide range of techniques such as shotgun proteomics, MuDPIT, etc. are available for characterizing PII, those for characterizing RNA-protein interactions are infancy. Given the significance of the long noncoding RNAs (lnc-RNA) in plant biology, it is imperative to isolate and characterize the functionality of the host proteome interacting with RNA. In this context, riboproteomics approach becomes a valuable tool to study these interactions. Here, using a noncoding plant pathogenic satellite-RNA (Sat-RNA) of Cucumber mosaic virus (CMV) as an RNA source, we describe a stepwise protocol for identifying the host proteome interacting specifically with the Sat-RNA. This protocol streamlines steps starting from in vitro transcription of RNA, preparation of RNA affinity column, preparation of cell lysate from Nicotiana benthamiana leaves infected with the Sat-RNA followed by the Co-IP and preparation of samples for LC-MS/MS. We believe this approach is applicable to a wide range of RNAs of any nature associated with eukaryotic and prokaryotic organisms.


Assuntos
RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Cucumovirus , Doenças das Plantas/virologia , Folhas de Planta/virologia , Ligação Proteica , Proteômica , RNA não Traduzido/genética , RNA Viral/genética , Nicotiana/virologia
16.
PLoS One ; 15(2): e0228036, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32015565

RESUMO

Atomic Force Microscopy was utilized to study the morphology of Gag, ΨRNA, and their binding complexes with lipids in a solution environment with 0.1Å vertical and 1nm lateral resolution. TARpolyA RNA was used as a RNA control. The lipid used was phospha-tidylinositol-(4,5)-bisphosphate (PI(4,5)P2). The morphology of specific complexes Gag-ΨRNA, Gag-TARpolyA RNA, Gag-PI(4,5)P2 and PI(4,5)P2-ΨRNA-Gag were studied. They were imaged on either positively or negatively charged mica substrates depending on the net charges carried. Gag and its complexes consist of monomers, dimers and tetramers, which was confirmed by gel electrophoresis. The addition of specific ΨRNA to Gag is found to increase Gag multimerization. Non-specific TARpolyA RNA was found not to lead to an increase in Gag multimerization. The addition PI(4,5)P2 to Gag increases Gag multimerization, but to a lesser extent than ΨRNA. When both ΨRNA and PI(4,5)P2 are present Gag undergoes comformational changes and an even higher degree of multimerization.


Assuntos
Infecções por HIV/genética , HIV-1/genética , RNA Viral/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/ultraestrutura , Membrana Celular/química , Membrana Celular/genética , Infecções por HIV/virologia , Soropositividade para HIV , HIV-1/química , HIV-1/patogenicidade , Humanos , Lipídeos/química , Microscopia de Força Atômica , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Fosfatidilinositol 4,5-Difosfato/química , Ligação Proteica , Multimerização Proteica/genética , RNA Viral/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
17.
Virus Evol ; 6(2): veaa070, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33240527

RESUMO

Understanding the evolutionary history of a virus and the mechanisms influencing the direction of its evolution is essential for the development of more durable strategies to control the virus in crop fields. While the deployment of host resistance in crops is the most efficient means to control various viruses, host resistance itself can act as strong selective pressure and thus play a critical role in the evolution of virus virulence. Cucumber mosaic virus (CMV), a plant RNA virus with high evolutionary capacity, has caused endemic disease in various crops worldwide, including pepper (Capsicum annuum L.), because of frequent emergence of resistance-breaking variants. In this study, we examined the molecular and evolutionary characteristics of recently emerged, resistance-breaking CMV variants infecting pepper. Our population genetics analysis revealed that the high divergence capacity of CMV RNA1 might have played an essential role in the host-interactive evolution of CMV and in shaping the CMV population structure in pepper. We also demonstrated that nonsynonymous mutations in RNA1 encoding the 1a protein enabled CMV to overcome the deployed resistance in pepper. Our findings suggest that resistance-driven selective pressures on RNA1 might have contributed in shaping the unique evolutionary pattern of CMV in pepper. Therefore, deployment of a single resistance gene may reduce resistance durability against CMV and more integrated approaches are warranted for successful control of CMV in pepper.

18.
J Virol ; 82(3): 1484-95, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18032497

RESUMO

Flock house virus (FHV), a bipartite RNA virus of insects and a member of the Nodaviridae family, shares viral replication features with the tripartite brome mosaic virus (BMV), an RNA virus that infects plants and is a member of the Bromoviridae family. In BMV and FHV, genome packaging is coupled to replication, a widely conserved mechanism among positive-strand RNA viruses of diverse origin. To unravel the events that modulate the mechanism of replication-coupled packaging, in this study, we have extended the transfer DNA (T-DNA)-based agroinfiltration system to express functional genome components of FHV in plant cells (Nicotiana benthamiana). Replication, intracellular membrane localization, and packaging characteristics in agroinfiltrated plant cells revealed that T-DNA plasmids of FHV were biologically active and faithfully mimicked complete replication and packaging behavior similar to that observed for insect cells. Synchronized coexpression of wild-type BMV and FHV genome components in plant cells resulted in the assembly of virions packaging the respective viral progeny RNA. To further elucidate the link between replication and packaging, coat protein (CP) open reading frames were precisely exchanged between BMV RNA 3 (B3) and FHV RNA 2 (F2), creating chimeric RNAs expressing heterologous CP genes (B3/FCP and F2/BCP). Coinfiltration of each chimera with its corresponding genome counterpart to provide viral replicase (B1+B2+B3/FCP and F1+F2/BCP) resulted in the expected progeny profiles, but virions exhibited a nonspecific packaging phenotype. Complementation with homologous replicase (with respect to CP) failed to enhance packaging specificity. Taken together, we propose that the transcription of CP mRNA from homologous replication and its translation must be synchronized to confer packaging specificity.


Assuntos
Bromovirus/genética , Nodaviridae/genética , Vírus de RNA/fisiologia , Montagem de Vírus/fisiologia , Replicação Viral/fisiologia , Bromovirus/fisiologia , Genoma Viral , Nodaviridae/fisiologia , RNA Viral/genética , Proteínas Recombinantes de Fusão/genética , Recombinação Genética , Nicotiana
19.
Methods Mol Biol ; 451: 251-64, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18370261

RESUMO

Analysis of viral RNA encapsidation assay provides a rapid means of assaying which of the progeny RNA are competent for packaging into stable mature virions. Generally, a parallel analysis of total RNA and RNA obtained from purified virions is advisable for accurate interpretation of the results. In this, we describe a series of in vivo assays in which viral RNA encapsidation can be verified. These include whole plants inoculated either mechanically or by Agroinfiltration and protoplasts. The encapsidation assay described here is for an extensively studied plant RNA virus, brome mosaic virus, and can be reliably applied to other viral systems as well as with appropriate buffers. In principle, the encapsidation assay requires purification of virions from either symptomatic leaves or transfected plant protoplasts followed by RNA isolation. The procedure involves grinding the infected tissue in an appropriate buffer followed by a low speed centrifugation step to remove the cell debris. The supernatant is then emulsified with an organic solvent such as chloroform to remove chlorophyll and cellular material. After a low seed centrifugation, the supernatant is subjected to high speed centrifugation to concentrate the virus as a pellet. Depending on the purity required, the partially purified virus preparation is further subjected to sucrose density gradient centrifugation. Following purification of virions, encapsidated RNA is isolated using standard phenol-chloroform extraction procedure. An important step in the encapsidation assay is the comparative analysis of total and virion RNA preparations by Northern hybridization. This would allow the investigator to compare the number of progeny RNA components synthesized during replication vs. encapsidation. Northern blots are normally hybridized with radioactively labeled RNA probes (riboprobes) for specific and sensitive detection of desired RNA species.


Assuntos
Vírus de Plantas/genética , RNA Viral/genética , Bromovirus/genética , Capsídeo/virologia , Proteínas do Capsídeo/genética , Hibridização de Ácido Nucleico , Plantas/virologia , Reação em Cadeia da Polimerase/métodos , Transcrição Gênica , Vírion/genética
20.
Annu Rev Phytopathol ; 44: 61-87, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16480335

RESUMO

The majority of positive-strand RNA viruses of plants replicate and selectively encapsidate their progeny genomes into stable virions in cytoplasmic compartments of the cell where the opportunity to copackage cellular RNA also exists. Remarkably, highly purified infectious virions contain almost exclusively viral RNA, suggesting that mechanisms exist to regulate preferential packaging of viral genomes. The general principle that governs RNA packaging is an interaction between the structural CP and a specific RNA signal. Mechanisms that enhance selective packaging of viral genomes and formation of infectious virions may involve factors other than CP and nucleic acid sequences. The possible involvement of replicase proteins is an example. Our knowledge concerning genome packaging among spherical plant RNA viruses is still maturing. The main focus of this review is to discuss factors that have limited progress and to evaluate recent technical breakthroughs likely to help unravel the mechanism of RNA packaging among viruses of agronomic importance. A key breakthrough is the development of in vivo systems and comparisons with results obtained in vitro.


Assuntos
Genoma Viral , Vírus de Plantas/genética , Vírus de RNA/genética , Montagem de Vírus , Conformação de Ácido Nucleico , Vírus de Plantas/fisiologia , Vírus de RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA