Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Curr Opin Cell Biol ; 8(4): 499-504, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8791447

RESUMO

Since the identification of essential protein-translocation components in the endoplasmic reticulum membrane, research efforts have concentrated on the elucidation of the molecular mechanism of protein transport across this membrane. Recent results have provided new information as to how proteins are targeted to, and inserted into, the translocation site during translation. Post-translational translocation has also been examined and is distinct from cotranslational translocation with respect to the mechanism and membrane protein components involved.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Transporte Biológico , Modelos Biológicos , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional
2.
Trends Cell Biol ; 3(3): 72-5, 1993 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14731773

RESUMO

Integral membrane proteins are generally targeted to translocation-competent membranes by virtue of signal sequences located close to the N-terminus of the polypeptide chain. Membrane anchoring is caused by the signal sequence or other hydrophobic segments located after it in the amino acid sequence. However, some integral membrane proteins do not follow these rules. The members of one class of nonconformist membrane proteins have no signal sequence, but instead possess a hydrophobic segment near the C-terminus that orients them with their N-termini in the cytoplasm. Members of this class are found in many organelles and are probably inserted into membranes by an unusual mechanism.

3.
J Cell Biol ; 151(1): 167-78, 2000 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-11018062

RESUMO

In posttranslational translocation in yeast, completed protein substrates are transported across the endoplasmic reticulum membrane through a translocation channel formed by the Sec complex. We have used photo-cross-linking to investigate interactions of cytosolic proteins with a substrate synthesized in a reticulocyte lysate system, before its posttranslational translocation through the channel in the yeast membrane. Upon termination of translation, the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC) are released from the polypeptide chain, and the full-length substrate interacts with several different cytosolic proteins. At least two distinct complexes exist that contain among other proteins either 70-kD heat shock protein (Hsp70) or tailless complex polypeptide 1 (TCP1) ring complex/chaperonin containing TCP1 (TRiC/CCT), which keep the substrate competent for translocation. None of the cytosolic factors appear to interact specifically with the signal sequence. Dissociation of the cytosolic proteins from the substrate is accelerated to the same extent by the Sec complex and an unspecific GroEL trap, indicating that release occurs spontaneously without the Sec complex playing an active role. Once bound to the Sec complex, the substrate is stripped of all cytosolic proteins, allowing it to subsequently be transported through the membrane channel without the interference of cytosolic binding partners.


Assuntos
Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas de Saccharomyces cerevisiae , Chaperonina com TCP-1 , Chaperoninas/metabolismo , Reagentes de Ligações Cruzadas , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Chaperonas Moleculares , Precursores de Proteínas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Transativadores/metabolismo
4.
J Cell Biol ; 148(5): 883-98, 2000 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-10704440

RESUMO

We have established an in vitro system for the formation of the endoplasmic reticulum (ER). Starting from small membrane vesicles prepared from Xenopus laevis eggs, an elaborate network of membrane tubules is formed in the presence of cytosol. In the absence of cytosol, the vesicles only fuse to form large spheres. Network formation requires a ubiquitous cytosolic protein and nucleoside triphosphates, is sensitive to N-ethylmaleimide and high cytosolic Ca(2+) concentrations, and proceeds via an intermediate stage in which vesicles appear to be clustered. Microtubules are not required for membrane tubule and network formation. Formation of the ER network shares significant similarities with formation of the nuclear envelope. Our results suggest that the ER network forms in a process in which cytosolic factors modify and regulate a basic reaction of membrane vesicle fusion.


Assuntos
Retículo Endoplasmático/metabolismo , Fusão de Membrana/fisiologia , Microtúbulos/metabolismo , Oócitos/química , Actinas/metabolismo , Animais , Antineoplásicos/farmacologia , Cálcio/metabolismo , Cálcio/farmacologia , Fracionamento Celular/métodos , Linhagem Celular , Sistema Livre de Células/metabolismo , Colchicina/farmacologia , Citosol/química , Citosol/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/ultraestrutura , Etilmaleimida/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Ionóforos , Fusão de Membrana/efeitos dos fármacos , Microscopia Eletrônica , Microtúbulos/efeitos dos fármacos , Membrana Nuclear/metabolismo , Oócitos/citologia , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Reagentes de Sulfidrila/farmacologia , Xenopus
5.
J Cell Biol ; 126(4): 925-34, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8051212

RESUMO

The cotranslational translocation of proteins across the ER membrane involves the tight binding of translating ribosomes to the membrane, presumably to ribosome receptors. The identity of the latter has been controversial. One putative receptor candidate is Sec61 alpha, a multi-spanning membrane protein that is associated with two additional membrane proteins (Sec61 beta and gamma) to form the Sec61p-complex. Other receptors of 34 and 180 kD have also been proposed on the basis of their ability to bind at low salt concentration ribosomes lacking nascent chains. We now show that the Sec61p-complex has also binding activity but that, at low salt conditions, it accounts for only one third of the total binding sites in proteoliposomes reconstituted from a detergent extract of ER membranes. Under these conditions, the assay has also limited specificity with respect to ribosomes. However, if the ribosome-binding assay is performed at physiological salt concentration, most of the unspecific binding is lost; the Sec61p-complex then accounts for the majority of specific ribosome-binding sites in reconstituted ER membranes. To study the membrane interaction of ribosomes participating in protein translocation, native rough microsomes were treated with proteases. The amount of membrane-bound ribosomes is only slightly reduced by protease treatment, consistent with the protease-resistance of Sec61 alpha which is shielded by these ribosomes. In contrast, p34 and p180 can be readily degraded, indicating that they are not essential for the membrane anchoring of ribosomes in protease-treated microsomes. These data provide further evidence that the Sec61p-complex is responsible for the membrane-anchoring of ribosomes during translocation and make it unlikely that p34 or p180 are essential for this process.


Assuntos
Retículo Endoplasmático/metabolismo , Fusão de Membrana , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Pâncreas/metabolismo , Prolactina/biossíntese , Prolactina/metabolismo , Precursores de Proteínas/metabolismo , Ribossomos/metabolismo , Animais , DNA/metabolismo , Cães , Retículo Endoplasmático/ultraestrutura , Cinética , Lipossomos/metabolismo , Microssomos/ultraestrutura , Pâncreas/ultraestrutura , Biossíntese de Proteínas , Precursores de Proteínas/biossíntese , Processamento de Proteína Pós-Traducional , Proteolipídeos/isolamento & purificação , Proteolipídeos/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/ultraestrutura , Canais de Translocação SEC , Transcrição Gênica
6.
J Cell Biol ; 141(4): 887-94, 1998 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-9585408

RESUMO

The Sec61 complex is the central component of the protein translocation apparatus of the ER membrane. We have addressed the role of the beta subunit (Sec61beta) during cotranslational protein translocation. With a reconstituted system, we show that a Sec61 complex lacking Sec61beta is essentially inactive when elongation and membrane targeting of a nascent chain occur at the same time. The translocation process is perturbed at a step where the nascent chain would be inserted into the translocation channel. However, if sufficient time is given for the interaction of the nascent polypeptide with the mutant Sec61 complex, translocation is almost normal. Thus Sec61beta kinetically facilitates cotranslational translocation, but is not essential for it. Using chemical cross-linking we show that Sec61beta not only interacts with subunits of the Sec61 complex but also with the 25-kD subunit of the signal peptidase complex (SPC25), thus demonstrating for the first time a tight interaction between the SPC and the Sec61 complex. Interestingly, the cross-links between Sec61beta and SPC25 and between Sec61beta and Sec61alpha depend on the presence of membrane-bound ribosomes, suggesting that these interactions are induced when translocation is initiated. We propose that the SPC is transiently recruited to the translocation site, thus enhancing its activity.


Assuntos
Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Prolactina/metabolismo , Biossíntese de Proteínas , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/metabolismo , Sítios de Ligação , Transporte Biológico , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Glicosilação , Membranas Intracelulares/ultraestrutura , Cinética , Lipossomos , Substâncias Macromoleculares , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras , Modelos Moleculares , Elongação Traducional da Cadeia Peptídica , Prolactina/biossíntese , Conformação Proteica , Precursores de Proteínas/biossíntese , Processamento de Proteína Pós-Traducional , Proteolipídeos/metabolismo , Ribossomos/metabolismo , Canais de Translocação SEC , Proteínas de Saccharomyces cerevisiae , Transcrição Gênica
7.
J Cell Biol ; 142(2): 355-64, 1998 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-9679136

RESUMO

We have investigated the role of membrane proteins and lipids during early phases of the cotranslational insertion of secretory proteins into the translocation channel of the endoplasmic reticulum (ER) membrane. We demonstrate that all steps, including the one during which signal sequence recognition occurs, can be reproduced with purified translocation components in detergent solution, in the absence of bulk lipids or a bilayer. Photocross-linking experiments with native membranes show that upon complete insertion into the channel signal sequences are both precisely positioned with respect to the protein components of the channel and contact lipids. Together, these results indicate that signal sequences are bound to a specific binding site at the interface between the channel and the surrounding lipids, and are recognized ultimately by protein-protein interactions. Our data also suggest that at least some signal sequences reach the binding site by transfer through the interior of the channel.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Partícula de Reconhecimento de Sinal/metabolismo , Animais , Sítios de Ligação , Transporte Biológico Ativo , Reagentes de Ligações Cruzadas , Detergentes , Cães , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/genética , Prolactina/genética , Prolactina/metabolismo , Biossíntese de Proteínas , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ribossomos/metabolismo , Canais de Translocação SEC , Partícula de Reconhecimento de Sinal/genética , Soluções
8.
J Cell Biol ; 134(1): 25-35, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8698819

RESUMO

Cotranslational translocation of proteins across the mammalian ER membrane involves, in addition to the signal recognition particle receptor and the Sec61p complex, the translocating chain-associating membrane (TRAM) protein, the function of which is still poorly understood. Using reconstituted proteoliposomes, we show here that the translocation of most, but not all, secretory proteins requires the function of TRAM. Experiments with hybrid proteins demonstrate that the structure of the signal sequence determines whether or not TRAM is needed. Features that distinguish TRAM-dependent and -independent signal sequences include the length of their charged, NH2-terminal region and the structure of their hydrophobic core. In cases where TRAM is required for translocation, it is not needed for the initial interaction of the ribosome/nascent chain complex with the ER membrane but for a subsequent step inside the membrane in which the nascent chain is inserted into the translocation site in a protease-resistant manner. Thus, TRAM functions in a signal sequence-dependent manner at a critical, early phase of the translocation process.


Assuntos
Retículo Endoplasmático Rugoso/metabolismo , Glicoproteínas de Membrana/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Sequência de Aminoácidos , Animais , Transporte Biológico , Sistema Livre de Células , Cães , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Canais de Translocação SEC , Solubilidade , Relação Estrutura-Atividade
9.
J Cell Biol ; 104(2): 201-8, 1987 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-3643215

RESUMO

We have studied the interaction between the signal sequence of nascent preprolactin and the signal recognition particle (SRP) during the initial events in protein translocation across the endoplasmic reticulum membrane. A new method of affinity labeling was used, whereby lysine residues, carrying the photoreactive group 4-(3-trifluoromethyldiazirino) benzoic acid in their side chains, are incorporated into a protein by means of modified lysyl-tRNA, and cross-linking to the interacting component is induced by irradiation. SRP interacts through its Mr 54,000 polypeptide component with the signal sequences of nascent preprolactin chains containing about 70 residues, and with decreasing affinity with longer chains as well; it causes inhibition of elongation. Binding of SRP is reversible and requires the nascent chain to be bound to a functional ribosome. SRP cross-linked to the signal sequence still inhibits elongation but does not prevent it completely. We conclude that SRP does not block the exit site of the polypeptide chain on the ribosome. The SRP receptor of the endoplasmic reticulum membrane displaces the signal sequence from SRP and, even if SRP is cross-linked, releases elongation arrest.


Assuntos
Azirinas/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Prolactina/genética , Precursores de Proteínas/genética , Sinais Direcionadores de Proteínas/metabolismo , Animais , Benzoatos , Cicloeximida/farmacologia , Cães , Peso Molecular , Pâncreas/metabolismo , Plantas/metabolismo , Prolactina/metabolismo , Biossíntese de Proteínas , Precursores de Proteínas/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Triticum/metabolismo
10.
J Cell Biol ; 113(1): 35-44, 1991 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1848866

RESUMO

Using a photocross-linking approach we have investigated the cytosolic and membrane components involved in the targeting and insertion of signal-anchor proteins into the membrane of the ER. The nascent chains of both type I and type II signal-anchor proteins can be cross-linked to the 54-kD subunit of the signal recognition particle. Upon addition of rough microsomes the type I and type II signal-anchor proteins interact with a number of components. Both types of protein interact with an integral membrane protein, the signal sequence receptor, previously identified by its proximity to preprolactin during its translocation (Wiedmann, M., T.V. Kurzchalia, E. Hartmann, and T.A. Rapoport. 1987. Nature [Lond.] 328:830-833). Three proteins, previously unidentified, were found to be cross-linked to the nascent chains of the signal-anchor proteins. Among them was a 37-kD protein that was found to be the main component interacting with the type I SA protein used. These proteins were not seen in the absence of membranes suggesting they are components of the ER. The ability of the nascent chains to be cross-linked to these identified proteins was shown to be abolished by prior treatment with agents known to disrupt translocation intermediates or ribosomes. We propose that the newly identified proteins function either in the membrane insertion of only a subset of proteins or only at a specific stage of insertion.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Ribonucleoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Transporte Biológico , Compartimento Celular , Reagentes de Ligações Cruzadas , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Dados de Sequência Molecular , Peso Molecular , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal , Tripsina/farmacologia
11.
J Cell Biol ; 147(1): 45-58, 1999 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-10508854

RESUMO

The human cytomegalovirus protein, US11, initiates the destruction of MHC class I heavy chains by targeting them for dislocation from the ER to the cytosol and subsequent degradation by the proteasome. We report the development of a permeabilized cell system that recapitulates US11-dependent degradation of class I heavy chains. We have used this system, in combination with experiments in intact cells, to identify and order intermediates in the US11-dependent degradation pathway. We find that heavy chains are ubiquitinated before they are degraded. Ubiquitination of the cytosolic tail of heavy chain is not required for its dislocation and degradation, suggesting that ubiquitination occurs after at least part of the heavy chain has been dislocated from the ER. Thus, ubiquitination of the heavy chain does not appear to be the signal to start dislocation. Ubiquitinated heavy chains are associated with membrane fractions, suggesting that ubiquitination occurs while the heavy chain is still bound to the ER membrane. Our results support a model in which US11 co-opts the quality control process by which the cell destroys misfolded ER proteins in order to specifically degrade MHC class I heavy chains.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/fisiologia , Ubiquitinas/metabolismo , Proteínas Virais/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Permeabilidade da Membrana Celular , Cisteína Endopeptidases/metabolismo , Citoplasma/metabolismo , Digitonina , Retículo Endoplasmático/metabolismo , Glicosilação , Meia-Vida , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Células Tumorais Cultivadas , Proteínas Virais/genética
12.
J Cell Biol ; 143(4): 1053-66, 1998 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-9817761

RESUMO

We have investigated the mechanism by which conventional kinesin is prevented from binding to microtubules (MTs) when not transporting cargo. Kinesin heavy chain (HC) was expressed in COS cells either alone or with kinesin light chain (LC). Immunofluorescence microscopy and MT cosedimentation experiments demonstrate that the binding of HC to MTs is inhibited by coexpression of LC. Association between the chains involves the LC NH2-terminal domain, including the heptad repeats, and requires a region of HC that includes the conserved region of the stalk domain and the NH2 terminus of the tail domain. Inhibition of MT binding requires in addition the COOH-terminal 64 amino acids of HC. Interaction between the tail and the motor domains of HC is supported by sedimentation experiments that indicate that kinesin is in a folded conformation. A pH shift from 7.2 to 6.8 releases inhibition of kinesin without changing its sedimentation behavior. Endogenous kinesin in COS cells also shows pH-sensitive inhibition of MT binding. Taken together, our results provide evidence that a function of LC is to keep kinesin in an inactive ground state by inducing an interaction between the tail and motor domains of HC; activation for cargo transport may be triggered by a small conformational change that releases the inhibition of the motor domain for MT binding.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Cadeias Leves de Miosina/metabolismo , Animais , Anticorpos , Células COS , DNA Complementar , Deleção de Genes , Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Cinesinas/genética , Cinesinas/imunologia , Proteínas Motores Moleculares/metabolismo , Mutagênese/fisiologia , Tubulina (Proteína)/metabolismo
13.
J Cell Biol ; 121(4): 743-50, 1993 May.
Artigo em Inglês | MEDLINE | ID: mdl-8491769

RESUMO

We have identified membrane components which are adjacent to type I and type II signal-anchor proteins during their insertion into the membrane of the ER. Using two different cross-linking approaches a 37-38-kD nonglycosylated protein, previously identified as P37 (High, S., D. Görlich, M. Wiedmann, T. A. Rapoport, and B. Dobberstein. 1991. J. Cell Biol. 113:35-44), was found adjacent to all the membrane inserted nascent chains used in this study. On the basis of immunoprecipitation, this ER protein was shown to be identical to the recently identified mammalian Sec61 protein. Thus, Sec61p is the principal cross-linking partner of both type I and type II signal-anchor proteins during their membrane insertion (this work), and of secretory proteins during their translocation (Görlich, D., S. Prehn, E. Hartmann, K.-U. Kalies, and T. A. Rapoport. 1992. Cell. 71:489-503). We propose that membrane proteins of both orientations, and secretory proteins employ the same ER translocation sites, and that Sec61p is a core component of these sites.


Assuntos
Retículo Endoplasmático/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Bases , Transporte Biológico , DNA , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Testes de Precipitina , Canais de Translocação SEC
14.
J Cell Biol ; 152(5): 959-70, 2001 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11238452

RESUMO

The cargo that the molecular motor kinesin moves along microtubules has been elusive. We searched for binding partners of the COOH terminus of kinesin light chain, which contains tetratricopeptide repeat (TPR) motifs. Three proteins were found, the c-jun NH(2)-terminal kinase (JNK)-interacting proteins (JIPs) JIP-1, JIP-2, and JIP-3, which are scaffolding proteins for the JNK signaling pathway. Concentration of JIPs in nerve terminals requires kinesin, as evident from the analysis of JIP COOH-terminal mutants and dominant negative kinesin constructs. Coprecipitation experiments suggest that kinesin carries the JIP scaffolds preloaded with cytoplasmic (dual leucine zipper-bearing kinase) and transmembrane signaling molecules (the Reelin receptor, ApoER2). These results demonstrate a direct interaction between conventional kinesin and a cargo, indicate that motor proteins are linked to their membranous cargo via scaffolding proteins, and support a role for motor proteins in spatial regulation of signal transduction pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Cinesinas/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Cinesinas/química , Cinesinas/genética , Proteínas Relacionadas a Receptor de LDL , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Testes de Precipitina , Ligação Proteica , Ratos , Receptores de Lipoproteínas/metabolismo , Proteína Reelina , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
15.
J Cell Biol ; 146(1): 29-44, 1999 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-10402458

RESUMO

The nuclear envelope (NE) is a distinct subdomain of the ER, but few membrane components have been described that are specific to it. We performed a visual screen in tissue culture cells to identify proteins targeted to the NE. This approach does not require assumptions about the nature of the association with the NE or the physical separation of NE and ER. We confirmed that screening a library of fusions to the green fluorescent protein can be used to identify proteins targeted to various subcompartments of mammalian cells, including the NE. With this approach, we identified a new NE membrane protein, named nurim. Nurim is a multispanning membrane protein without large hydrophilic domains that is very tightly associated with the nucleus. Unlike the known NE membrane proteins, it is neither associated with nuclear pores, nor targeted like lamin-associated membrane proteins. Thus, nurim is a new type of NE membrane protein that is localized to the NE by a distinct mechanism.


Assuntos
Clonagem Molecular/métodos , Biblioteca Gênica , Proteínas de Membrana/análise , Membrana Nuclear/química , Proteínas Nucleares/análise , Sequência de Aminoácidos , Animais , Transporte Biológico , Linhagem Celular , Núcleo Celular/química , Retículo Endoplasmático/química , Fluorescência , Proteínas de Fluorescência Verde , Humanos , Laminas , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Solubilidade , Frações Subcelulares/química
16.
J Cell Biol ; 150(3): 461-74, 2000 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-10931860

RESUMO

We find that the peripheral ER in Saccharomyces cerevisiae forms a dynamic network of interconnecting membrane tubules throughout the cell cycle, similar to the ER in higher eukaryotes. Maintenance of this network does not require microtubule or actin filaments, but its dynamic behavior is largely dependent on the actin cytoskeleton. We isolated three conditional mutants that disrupt peripheral ER structure. One has a mutation in a component of the COPI coat complex, which is required for vesicle budding. This mutant has a partial defect in ER segregation into daughter cells and disorganized ER in mother cells. A similar phenotype was found in other mutants with defects in vesicular trafficking between ER and Golgi complex, but not in mutants blocked at later steps in the secretory pathway. The other two mutants found in the screen have defects in the signal recognition particle (SRP) receptor. This receptor, along with SRP, targets ribosome-nascent chain complexes to the ER membrane for protein translocation. A conditional mutation in SRP also disrupts ER structure, but other mutants with translocation defects do not. We also demonstrate that, both in wild-type and mutant cells, the ER and mitochondria partially coalign, and that mutations that disrupt ER structure also affect mitochondrial structure. Our data suggest that both trafficking between the ER and Golgi complex and ribosome targeting are important for maintaining ER structure, and that proper ER structure may be required to maintain mitochondrial structure.


Assuntos
Complexo I de Proteína do Envoltório/genética , Retículo Endoplasmático/ultraestrutura , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular , Actinas , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Citoesqueleto , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Proteínas Ativadoras de GTPase , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Microtúbulos , Mitocôndrias/ultraestrutura , Proteínas SNARE , Saccharomyces cerevisiae/ultraestrutura , Partícula de Reconhecimento de Sinal/metabolismo
17.
J Cell Biol ; 111(6 Pt 1): 2283-94, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2177473

RESUMO

Bifunctional cross-linking reagents were used to probe the protein environment in the ER membrane of the signal sequence receptor (SSR), a 24-kD integral membrane glycoprotein (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature [Lond.]. 328:830-833). The proximity of several polypeptides was demonstrated. A 22-kD glycoprotein was identified tightly bound to the 34-kD SSR even after membrane solubilization. The 34-kD polypeptide, now termed alpha SSR, and the 22-kD polypeptide, the beta SSR, represent a heterodimer. We report on the sequence of the beta SSR, its membrane topology, and on the mechanism of its integration into the membrane. Cross-linking also produced dimers of the alpha-subunit of the SSR indicating that oligomers of the SSR exist in the ER membrane. Various bifunctional cross-linking reagents were used to study the relation to ER membrane proteins of nascent chains of preprolactin and beta-lactamase at different stages of their translocation through the membrane. The predominant cross-linked products obtained in high yields contained the alpha SSR, indicating in conjunction with previous results that it is a major membrane protein in the neighborhood of translocating nascent chains of secretory proteins. The results support the existence of a translocon, a translocation complex involving the SSR, which constitutes the specific site of protein translocation across the ER membrane.


Assuntos
Proteínas de Ligação ao Cálcio , Reagentes de Ligações Cruzadas/farmacologia , Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/genética , Microssomos/metabolismo , Receptores de Superfície Celular/genética , Receptores Citoplasmáticos e Nucleares , Receptores de Peptídeos , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia de Afinidade , Clonagem Molecular , DNA/genética , Cães , Membranas Intracelulares/metabolismo , Substâncias Macromoleculares , Glicoproteínas de Membrana/isolamento & purificação , Glicoproteínas de Membrana/metabolismo , Modelos Estruturais , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/isolamento & purificação , Plasmídeos , Biossíntese de Proteínas , Conformação Proteica , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Receptores de Superfície Celular/isolamento & purificação , Receptores de Superfície Celular/metabolismo , Transcrição Gênica , beta-Lactamases/genética
18.
Science ; 258(5084): 931-6, 1992 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-1332192

RESUMO

The biosynthesis of many eukaryotic proteins requires their transport across the endoplasmic reticulum (ER) membrane. The process can be divided into two phases: (i) a targeting cycle, during which, by virtue of their signal sequences, nascent polypeptides are directed to translocation sites in the ER and (ii) the actual transfer of proteins across the membrane. The first phase has been well characterized, whereas the latter until recently was completely unresolved. Key components of the translocation apparatus have now been identified and it seems likely that they form a protein-conducting channel in the ER membrane. The transport process is similar to the process of protein export in bacteria.


Assuntos
Retículo Endoplasmático/ultraestrutura , Células Eucarióticas/metabolismo , Proteínas de Choque Térmico , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transporte Biológico , Eletrofisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Ribonucleoproteínas/fisiologia , Ribossomos/metabolismo , Canais de Translocação SEC , Partícula de Reconhecimento de Sinal
19.
Science ; 277(5328): 938-41, 1997 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9252322

RESUMO

Posttranslational protein translocation across the endoplasmic reticulum membrane of yeast requires a seven-component transmembrane complex (the Sec complex) in collaboration with the lumenal Kar2 protein (Kar2p). A translocation substrate was initially bound to the cytosolic face of the purified Sec complex in a signal-sequence-dependent but Kar2p- and nucleotide-independent manner. In a subsequent reaction, in which Kar2p interacted with the lumenal face of the Sec complex and hydrolyzed adenosine triphosphate, the substrate moved through a channel formed by the Sec complex and was released at the lumenal end. Movement through the channel occurred in detergent solution in the absence of a lipid bilayer.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Reagentes de Ligações Cruzadas , Citosol/metabolismo , Detergentes , Digitonina , Retículo Endoplasmático/metabolismo , Bicamadas Lipídicas , Lipossomos/metabolismo , Sinais Direcionadores de Proteínas/metabolismo , Proteolipídeos/metabolismo , RNA de Transferência/metabolismo , Canais de Translocação SEC , Solubilidade , Succinimidas
20.
Trends Biochem Sci ; 15(9): 355-8, 1990 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-2238046

RESUMO

Protein transport across the endoplasmic reticulum (ER) membrane may be divided into two phases: an initiation or targeting cycle, which has been fairly well characterized, and the actual transfer of the polypeptide chain through the membrane, the mechanism of which is still unknown. In this review, the initiation cycle is discussed with emphasis on the mechanism of signal sequence recognition by the 54 kDa polypeptide of the signal recognition particle (SRP) and on the efficiency of targeting of nascent chains. Recent results are reviewed suggesting the transfer of the polypeptide chain by means of a translocation complex, a constituent of which appears to be the signal sequence receptor protein (SSR).


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Animais , Transporte Biológico , Humanos , Sinais Direcionadores de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA