Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(24): 247401, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665649

RESUMO

Femtosecond time-resolved x-ray diffraction is used to study a photoinduced phase transition between two charge density wave (CDW) states in 1T-TaS_{2}, namely the nearly commensurate (NC) and the incommensurate (I) CDW states. Structural modulations associated with the NC-CDW order are found to disappear within 400 fs. The photoinduced I-CDW phase then develops through a nucleation and growth process which ends 100 ps after laser excitation. We demonstrate that the newly formed I-CDW phase is fragmented into several nanometric domains that are growing through a coarsening process. The coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth law, which describes the ordering kinetics in systems exhibiting a nonconservative order parameter.

2.
Phys Rev Lett ; 117(15): 156401, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768359

RESUMO

We report on time-resolved x-ray diffraction measurements following femtosecond laser excitation in pure bulk chromium. Comparing the evolution of incommensurate charge-density-wave (CDW) and atomic lattice reflections, we show that, a few nanoseconds after laser excitation, the CDW undergoes different structural changes than the atomic lattice. We give evidence for a transient CDW shear strain that breaks the lattice point symmetry. This strain is characteristic of sliding CDWs, as observed in other incommensurate CDW systems, suggesting the laser-induced CDW sliding capability in 3D systems. This first evidence opens perspectives for unconventional laser-assisted transport of correlated charges.

3.
Phys Rev Lett ; 113(2): 026401, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062214

RESUMO

Using femtosecond time-resolved x-ray diffraction, we directly monitor the coherent lattice dynamics through an ultrafast charge-density-wave-to-metal transition in the prototypical Peierls system K(0.3)MoO(3) over a wide range of relevant excitation fluences. While in the low fluence regime we directly follow the structural dynamics associated with the collective amplitude mode; for fluences above the melting threshold of the electronic density modulation we observe a transient recovery of the periodic lattice distortion. We can describe these structural dynamics as a motion along the coordinate of the Peierls distortion triggered by the prompt collapse of electronic order after photoexcitation. The results indicate that the dynamics of a structural symmetry-breaking transition are determined by a high-symmetry excited state potential energy surface distinct from that of the initial low-temperature state.

4.
Sci Rep ; 13(1): 14571, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666909

RESUMO

The emerging CdTe-BeTe semiconductor alloy that exhibits a dramatic mismatch in bond covalency and bond stiffness clarifying its vibrational-mechanical properties is used as a benchmark to test the limits of the percolation model (PM) worked out to explain the complex Raman spectra of the related but less contrasted Zn1-xBex-chalcogenides. The test is done by way of experiment ([Formula: see text]), combining Raman scattering with X-ray diffraction at high pressure, and ab initio calculations ([Formula: see text] ~ 0-0.5; [Formula: see text]~1). The (macroscopic) bulk modulus [Formula: see text] drops below the CdTe value on minor Be incorporation, at variance with a linear [Formula: see text] versus [Formula: see text] increase predicted ab initio, thus hinting at large anharmonic effects in the real crystal. Yet, no anomaly occurs at the (microscopic) bond scale as the regular bimodal PM-type Raman signal predicted ab initio for Be-Te in minority ([Formula: see text]~0, 0.5) is barely detected experimentally. At large Be content ([Formula: see text]~1), the same bimodal signal relaxes all the way down to inversion, an unprecedented case. However, specific pressure dependencies of the regular ([Formula: see text]~0, 0.5) and inverted ([Formula: see text]~1) Be-Te Raman doublets are in line with the predictions of the PM. Hence, the PM applies as such to Cd1-xBexTe without further refinement, albeit in a "relaxed" form. This enhances the model's validity as a generic descriptor of phonons in alloys.

5.
Phys Rev Lett ; 109(25): 257206, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368495

RESUMO

We describe a novel type of ordering phenomenon associated with the incommensurate occupational modulation of bistable molecular magnetic state in a spin-crossover material. This unusual type of aperiodicity resulting from the ordering of multistable electronic states opens new possibilities for addressing such materials by light. Here we show that light can switch the crystal from four- to three-dimensional periodic structure. Mixing aperiodicity, multistability, and photoinduced phenomenà opens new perspectives for directing complex order and function in material science.

6.
Sci Rep ; 12(1): 753, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031647

RESUMO

Raman scattering and ab initio Raman/phonon calculations, supported by X-ray diffraction, are combined to study the vibrational properties of Zn1-xBexTe under pressure. The dependence of the Be-Te (distinct) and Zn-Te (compact) Raman doublets that distinguish between Be- and Zn-like environments is examined within the percolation model with special attention to x ~ (0,1). The Be-like environment hardens faster than the Zn-like one under pressure, resulting in the two sub-modes per doublet getting closer and mechanically coupled. When a bond is so dominant that it forms a matrix-like continuum, its two submodes freely couple on crossing at the resonance, with an effective transfer of oscillator strength. Post resonance the two submodes stabilize into an inverted doublet shifted in block under pressure. When a bond achieves lower content and merely self-connects via (finite/infinite) treelike chains, the coupling is undermined by overdamping of the in-chain stretching until a «phonon exceptional point¼ is reached at the resonance. Only the out-of-chain vibrations «survive¼ the resonance, the in-chain ones are «killed¼. This picture is not bond-related, and hence presumably generic to mixed crystals of the closing-type under pressure (dominant over the opening-type), indicating a key role of the mesostructure in the pressure dependence of phonons in mixed crystals.

7.
Phys Rev Lett ; 106(6): 065502, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21405477

RESUMO

We report on a new approach to probe bulk dislocations by using coherent x-ray diffraction. Coherent x rays are particularly suited for bulk dislocation studies because lattice phase shifts in condensed matter induce typical diffraction patterns which strongly depend on the fine structure of the dislocation cores. The strength of the method is demonstrated by performing coherent diffraction of a single dislocation loop in silicon. A dissociation of a bulk dislocation is measured and proves to be unusually large compared to surface dislocation dissociations. This work opens a route for the study of dislocation cores in the bulk in a static or dynamical regime, and under various external constraints.


Assuntos
Silício/química , Difração de Raios X
8.
Nat Commun ; 8: 13917, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067228

RESUMO

The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott-Hubbard material V2O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems.

9.
J Phys Condens Matter ; 28(20): 205401, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27114448

RESUMO

Near-forward Raman scattering combined with ab initio phonon and bond length calculations is used to study the 'phonon-polariton' transverse optical modes (with mixed electrical-mechanical character) of the II-VI ZnSe1-x S x mixed crystal under pressure. The goal of the study is to determine the pressure dependence of the poorly-resolved percolation-type Zn-S Raman doublet of the three oscillator [1 × (Zn-Se), 2 × (Zn-S)] ZnSe0.68S0.32 mixed crystal, which exhibits a phase transition at approximately the same pressure as its two end compounds (~14 GPa, zincblende → rocksalt), as determined by high-pressure x-ray diffraction. We find that the intensity of the lower Zn-S sub-mode of ZnSe0.68S0.32, due to Zn-S bonds vibrating in their own (S-like) environment, decreases under pressure (Raman scattering), whereas its frequency progressively converges onto that of the upper Zn-S sub-mode, due to Zn-S vibrations in the foreign (Se-like) environment (ab initio calculations). Ultimately, only the latter sub-mode survives. A similar 'phonon freezing' was earlier evidenced with the well-resolved percolation-type Be-Se doublet of Zn1-x Be x Se (Pradhan et al 2010 Phys. Rev. B 81 115207), that exhibits a large contrast in the pressure-induced structural transitions of its end compounds. We deduce that the above collapse/convergence process is intrinsic to the percolation doublet of a short bond under pressure, at least in a ZnSe-based mixed crystal, and not due to any pressure-induced structural transition.

10.
J Phys Condens Matter ; 26(29): 292201, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24961271

RESUMO

Combining temperature-dependent x-ray diffraction, Raman spectroscopy and first-principles-based effective Hamiltonian calculations, we show that varying the thickness of (Ba0.8Sr0.2)TiO3 (BST) thin films deposited on the same single substrate (namely, MgO) enables us to change not only the magnitude but also the sign of the misfit strain. Such previously overlooked control of the strain allows several properties of these films (e.g. Curie temperature, symmetry of ferroelectric phases, dielectric response) to be tuned and even optimized. Surprisingly, such desired control of the strain (and of the resulting properties) originates from an effect that is commonly believed to be detrimental to functionalities of films, namely the existence of misfit dislocations. The present study therefore provides a novel route to strain engineering, as well as leading us to revisit common beliefs.

12.
Nat Commun ; 1: 105, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21045823

RESUMO

V(2)O(3) is the prototype system for the Mott transition, one of the most fundamental phenomena of electronic correlation. Temperature, doping or pressure induce a metal-to-insulator transition (MIT) between a paramagnetic metal (PM) and a paramagnetic insulator. This or related MITs have a high technological potential, among others, for intelligent windows and field effect transistors. However the spatial scale on which such transitions develop is not known in spite of their importance for research and applications. Here we unveil for the first time the MIT in Cr-doped V(2)O(3) with submicron lateral resolution: with decreasing temperature, microscopic domains become metallic and coexist with an insulating background. This explains why the associated PM phase is actually a poor metal. The phase separation can be associated with a thermodynamic instability near the transition. This instability is reduced by pressure, that promotes a genuine Mott transition to an eventually homogeneous metallic state.

15.
Phys Rev B Condens Matter ; 38(7): 4469-4480, 1988 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-9946833
16.
Phys Rev B Condens Matter ; 53(16): R10532-R10535, 1996 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-9982724
18.
19.
Phys Rev B Condens Matter ; 52(7): 5414-5425, 1995 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9981733
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA