Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mass Spectrom Rev ; 40(5): 647-669, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32779281

RESUMO

Time-of-flight mass spectrometry (TOFMS) is one of the simplest and most powerful approaches for mass spectrometry. Realization of the advantages inherent in TOFMS requires innovation in the theory and practice of the technique. Instrumental developments, in turn, create new capabilities that enable applications in chemical measurement. This review focuses on the recent advances in TOFMS instrumentation. New strategies for ion acceleration, multiplexed detection, miniaturized TOFMS instruments, approaches to extend the length of ion flight, and novel ion detection technologies are reviewed. Techniques that change the basic paradigm of TOFMS by measuring m/z based on ion flight distance are considered, as are applications at the frontiers of instrumental performance. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.

2.
Analyst ; 139(18): 4505-11, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25054911

RESUMO

In the last several years, illicit electronic components have been discovered in the inventories of several distributors and even installed in commercial and military products. Illicit or counterfeit electronic components include a broad category of devices that can range from the correct unit with a more recent date code to lower-specification or non-working systems with altered names, manufacturers and date codes. Current methodologies for identification of counterfeit electronics rely on visual microscopy by expert users and, while effective, are very time-consuming. Here, a plasma-based ambient desorption/ionization source, the flowing atmospheric pressure afterglow (FAPA) is used to generate a mass-spectral fingerprint from the surface of a variety of discrete electronic integrated circuits (ICs). Chemometric methods, specifically principal component analysis (PCA) and the bootstrapped error-adjusted single-sample technique (BEAST), are used successfully to differentiate between genuine and counterfeit ICs. In addition, chemical and physical surface-removal techniques are explored and suggest which surface-altering techniques were utilized by counterfeiters.

3.
Anal Bioanal Chem ; 406(29): 7511-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25178932

RESUMO

Ambient desorption/ionization (ADI) sources coupled to mass spectrometry (MS) offer outstanding analytical features: direct analysis of real samples without sample pretreatment, combined with the selectivity and sensitivity of MS. Since ADI sources typically work in the open atmosphere, ambient conditions can affect the desorption and ionization processes. Here, the effects of internal source parameters and ambient humidity on the ionization processes of the flowing atmospheric pressure afterglow (FAPA) source are investigated. The interaction of reagent ions with a range of analytes is studied in terms of sensitivity and based upon the processes that occur in the ionization reactions. The results show that internal parameters which lead to higher gas temperatures afforded higher sensitivities, although fragmentation is also affected. In the case of humidity, only extremely dry conditions led to higher sensitivities, while fragmentation remained unaffected.

4.
Anal Bioanal Chem ; 406(29): 7419-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24866712

RESUMO

In this study, we demonstrate the performance of a new mass spectrometry concept called zoom time-of-flight mass spectrometry (zoom-TOFMS). In our zoom-TOFMS instrument, we combine two complementary types of TOFMS: conventional, constant-energy acceleration (CEA) TOFMS and constant-momentum acceleration (CMA) TOFMS to provide complete mass-spectral coverage as well as enhanced resolution and duty factor for a narrow, targeted mass region, respectively. Alternation between CEA- and CMA-TOFMS requires only that electrostatic instrument settings (i.e., reflectron and ion optics) and ion acceleration conditions be changed. The prototype zoom-TOFMS instrument has orthogonal-acceleration geometry, a total field-free distance of 43 cm, and a direct-current glow-discharge ionization source. Experimental results demonstrate that the CMA-TOFMS "zoom" mode offers resolution enhancement of 1.6 times over single-stage acceleration CEA-TOFMS. For the atomic mass range studied here, the maximum resolving power at full-width half-maximum observed for CEA-TOFMS was 1,610 and for CMA-TOFMS the maximum was 2,550. No difference in signal-to-noise (S/N) ratio was observed between the operating modes of zoom-TOFMS when both were operated at equivalent repetition rates. For a 10-kHz repetition rate, S/N values for CEA-TOFMS varied from 45 to 990 and from 67 to 10,000 for CMA-TOFMS. This resolution improvement is the result of a linear TOF-to-mass scale and the energy-focusing capability of CMA-TOFMS. Use of CMA also allows ions outside a given m/z range to be rejected by simple ion-energy barriers to provide a substantial improvement in duty factor.

5.
Appl Spectrosc ; : 37028241263567, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881037

RESUMO

The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed. In the present compilation, this dilemma is overcome by assembling the most impactful publications in the area of analytical atomic spectrometry. Each entry was proposed by at least one current expert in the field and supported by a narrative that justifies its inclusion. The entries were then assembled into a coherent sequence and returned to contributors for a round-robin review.

6.
Anal Chem ; 85(1): 129-37, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23157551

RESUMO

A new method of detection for ion chromatography (IC) is described that couples replacement-ion chromatography (RIC) with an atmospheric-pressure solution-cathode glow discharge (SCGD). In the new instrument, a conventional suppressed IC arrangement is followed by a "replacement column" that consists of a cation-exchange micromembrane suppressor continuously regenerated with Li(2)SO(4). In this arrangement analytes are stoichiometrically converted to Li salts when they pass through the replacement column and are introduced into the SCGD, where they are detected indirectly by atomic emission spectrometry. Though found to be unsuitable for cation determinations, the SCGD-RIC instrument shows good repeatability (<3.5% peak area relative standard deviation), approximately 4 orders of linear dynamic range, universal calibration (similar molar sensitivity for anions of the same charge), and detection limits between 0.08 and 0.64 µg·mL(-1) (25-µL injection) for several mono- and divalent anions. Deviations from the universal calibration were also observed and are critically evaluated. Optimal operating conditions are described, analytical figures of merit are presented, and background sources present in the system are characterized and explained.

7.
Anal Chem ; 85(18): 8498-502, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23968307

RESUMO

Work presented here demonstrates application of nanopipettes pulled to orifice diameters of less than 100 nm as electrospray ionization emitters for mass spectrometry. Mass spectrometric analysis of a series of peptides and proteins electrosprayed from pulled-quartz capillary nanopipette emitters with internal diameters ranging from 37 to 70 nm is detailed. Overall, the use of nanopipette emitters causes a shift toward the production of ions of higher charge states and leads to a reduction in width of charge-state distribution as compared to typical nanospray conditions. Further, nanopipettes show improved S/N and the same signal precision as typical nanospray, despite the much smaller dimensions. As characterized by SEM images acquired before and after spray, nanopipettes are shown to be robust under conditions employed. Analytical calculations and numerical simulations are used to calculate the electric field at the emitter tip, which can be significant for the small diameter tips used.

8.
Anal Chem ; 85(15): 7512-8, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23808829

RESUMO

The flowing atmospheric-pressure afterglow (FAPA) is a promising new source for atmospheric-pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, and applied current of 30 mA at 200 V for 6 W of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (<3% change at 450 K) by water vapor during solution-aerosol sample introduction. The primary mass-spectral background species are protonated water clusters, and the primary analyte ions are protonated molecular ions (M + H(+)). Flexibility of the new ambient sampling source is demonstrated by coupling it with a laser ablation unit, a concentric nebulizer, and a droplet-on-demand system for sample introduction. A novel arrangement is also presented in which the central channel of the h-FAPA is used as the inlet to a mass spectrometer.


Assuntos
Pressão Atmosférica , Espectrometria de Massas/instrumentação , Condutividade Elétrica , Desenho de Equipamento , Preparações Farmacêuticas/química
9.
Rapid Commun Mass Spectrom ; 26(21): 2526-34, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23008070

RESUMO

RATIONALE: Distance-of-flight mass spectrometry (DOFMS) is a velocity-based mass separation technique in which ions are spread across a spatially selective detector according to m/z. In this work, we investigate the practical mass range available for DOFMS with a finite-length detector. METHODS: A glow-discharge DOFMS instrument has been constructed for the analysis of atomic ions. This instrument was modified to accommodate two spatially selective ion detectors, arranged co-linearly, along the mass-separation axis of the analyzer. With this geometry, each detector covers a different portion of the distance-of-flight spectrum and ions are detected simultaneously at the two detectors. The total flight distance covered by the two detectors is 106 mm and simulates DOF detection across a broad mass range. RESULTS: DOFMS theory predicts that ions of all m/z values are focused at a single flight time, but at m/z-dependent flight distances. Therefore, ions that are detected across a wide portion of the DOF axis should all yield the same peak widths. With a focal-plane camera detector and a micro-channel plate/phosphor-screen detection assembly, we found simultaneous, uniform focus of (40)Ar(2)(+) and of (65)Cu(+) and (63)Cu(+) with the ions spread 82 mm across the DOF axis. This detection length, combined with the current instrument geometry, allows for a simultaneously detectable m/z value of 4:3 (high mass-to-low mass). CONCLUSIONS: These results are the first experimental verification that constant-momentum acceleration (CMA)-DOFMS provides energy focus across an extended detection length. Evidence presented demonstrates that DOFMS is amenable to detection with (at least) a 100-mm detector surface. These results indicate that DOFMS is well suited for detection of broader mass ranges.

10.
Anal Chem ; 83(22): 8552-9, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21972781

RESUMO

Distance-of-flight mass spectrometry (DOFMS) is a velocity-based mass-separation technique in which ions are separated in space along the plane of a spatially selective detector. In the present work, a solid-state charge-detection array, the focal-plane camera (FPC), was incorporated into the DOFMS platform. Use of the FPC with our DOFMS instrument resulted in improvements in analytical performance, usability, and versatility over a previous generation instrument that employed a microchannel-plate/phosphor DOF detector. Notably, FPC detection provided resolution improvements of at least a factor of 2, with typical DOF linewidths of 300 µm (R((fwhm)) = 1000). The merits of solid-state detection for DOFMS are evaluated, and methods to extend the DOFMS mass range are considered.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Cobre/análise , Chumbo/análise , Estanho/análise , Zinco/análise
11.
Artigo em Inglês | MEDLINE | ID: mdl-32573245

RESUMO

Enzymatic digestion of proteins is a critical step in bottom-up and middle-down proteomics. Here, we demonstrate a method for decreasing the time required for proteolytic digestion of proteins from multiple hours to minutes by using an in-line microstrip cavity for programmed microwave heating. When a nanospray emitter tip, containing a digestion sample, is exposed to a region of highly focused microwave field, the rate of proteolytic digestion is enhanced and the time required for digestion greatly decreased. The design is advantageous for mass spectrometry because the solution-based digestion can then be directly sprayed from a nanoelectrospray tip emitter, decreasing sample transfer loss and allowing the system to be used in a flow-through proteolytic workflow. Microwave-assisted digestion using this method is evaluated against standard overnight digestion protocols using a variety of proteins, evaluating sequence coverage and observed peptide location, digestion rate, and overall efficacy. The influence of applied microwave power is investigated, and enzymatic kinetic parameters are evaluated to estimate temperature within the microreactor. Finally, the modulation of the proteolytic digestion of proteins based upon the modulation of applied microwave power is demonstrated on a time scale of seconds in a flow-through system.

12.
Anal Chem ; 81(13): 5467-73, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19462968

RESUMO

A 512-channel Faraday-strip array detector has been developed and fitted to a Mattauch-Herzog geometry mass spectrograph for the simultaneous acquisition of multiple mass-to-charge values. Several advantages are realized by using simultaneous detection methods, including higher duty cycles, removal of correlated noise, and multianalyte transient analyses independent of spectral skew. The new 512-channel version offers narrower, more closely spaced pixels, providing improved spectral peak sampling and resolution. In addition, the electronics in the amplification stage of the new detector array incorporate a sample-and-hold feature that enables truly simultaneous interrogation of all 512 channels. While sensitivity and linear dynamic range remain impressive for this Faraday-based detector system, limits of detection and isotope ratio data have suffered slightly from leaky p-n junctions produced during the manufacture of the semiconductor-based amplification and readout stages. This paper describes the new 512-channel detector array, the current dominant noise sources, and the figures of merit for the device as pertaining to inductively coupled plasma ionization.

13.
Anal Bioanal Chem ; 406(29): 7417-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25134674
14.
Anal Chem ; 80(21): 8308-13, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18826246

RESUMO

A plasma-based ambient desorption/ionization mass spectrometry (ADI-MS) source was used to perform molecular mass spectral imaging. A small amount of sample material was ablated by focusing 266 nm laser light onto a spot. The resulting aerosol was transferred by a nitrogen stream to the flowing afterglow of a helium atmospheric pressure glow discharge ionization source; the ionized sample material was analyzed by a Leco Unique time-of-flight mass spectrometer. Two-dimensional mass spectral images were generated by scanning the laser beam across a sample surface. The total analysis time for a 6 mm (2) surface, which is limited by the washout of the ablation chamber, was less than 30 min. With this technique, a spatial resolution of approximately 20 microm has been achieved. Additionally, the laser ablation configuration was used to obtain depth information of over 2 mm with a resolution of approximately 40 microm. The combination of laser ablation with the flowing atmospheric pressure afterglow source was used to analyze several sample surfaces for a wide variety of analytes and with high sensitivity (LOD of 5 fmol for caffeine).


Assuntos
Pressão Atmosférica , Lasers , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Estrutura Molecular , Temperatura
15.
Anal Chem ; 80(22): 8622-7, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18937424

RESUMO

A low-power, atmospheric-pressure microplasma source based on a dielectric barrier discharge (DBD) has been developed for use in atomic emission spectrometry. The small plasma (0.6 mm x 1 mm x 10 mm) is generated within a glass cell by using electrodes that do not contact the plasma. Powered by an inexpensive ozone generator, the discharge ignites spontaneously, can be easily sustained in Ar or He at gas flow rates ranging from 5 to 200 mL min(-1), and requires less than 1 W of power. The effect of operating parameters such as plasma gas identity, plasma gas flow rate, and residual water vapor on the DBD source performance has been investigated. The plasma can be operated without removal of residual water vapor, permitting it to be directly coupled with cold vapor generation sample introduction. The spectral background of the source is quite clean in the range from 200 to 260 nm with low continuum and structured components. The DBD source has been applied to the determination of Hg by continuous-flow, cold vapor generation and offers detection limits from 14 (He-DBD) to 43 pg mL(-1) (Ar-DBD) without removal of the residual moisture. The use of flow injection with the He-DBD permits measurement of Hg with a 7.2 pg limit of detection, and with repetitive injections having an RSD of <2% for a 10 ng mL(-1) standard.

16.
Anal Chem ; 80(18): 7043-50, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18710258

RESUMO

A novel vapor-generation technique is described for mercury determination in aqueous solutions. Without need for a chemical reducing agent, dissolved mercury species are converted to volatile Hg vapor in a solution cathode glow discharge. The generated Hg vapor is then transported to an inductively coupled plasma for determination by atomic emission spectrometry. Mercury vapor is readily generated from a background electrolyte containing 0.1 M HNO 3. Vapor generation efficiency was found to be higher by a factor of 2-3 in the presence of low molecular weight organic acids (formic or acetic acids) or alcohols (ethanol). Optimal conditions for discharge-induced vapor generation and reduced interference from concomitant inorganic ions were also identified. However, the presence of chloride ion reduces the efficiency of Hg-vapor generation. In the continuous sample introduction mode, the detection limit was found to be 0.7 microg L (-1), and repeatability was 1.2% RSD ( n = 11) for a 20 microg L (-1) standard. In comparison with other vapor generation methods, it offers several advantages: First, it is applicable to both inorganic and organic Hg determination; organic mercury (thiomersal) can be directly transformed into volatile Hg species without the need for prior oxidation. Second, the vapor-generation efficiency is high; the efficiency (with formic acid as a promoter) is superior to that of conventional SnCl 2-HCl reduction. Third, the vapor generation is extremely rapid and therefore is easy to couple with flow injection. The method is sensitive and simple in operation, requires no auxiliary reagents, and serves as a useful alternative to conventional vapor generation for ultratrace Hg determination.


Assuntos
Temperatura Baixa , Mercúrio/análise , Espectrofotometria Atômica/métodos , Eletrodos , Estudos de Viabilidade , Gases/química , Ácido Clorídrico/química , Compostos Orgânicos/química , Sensibilidade e Especificidade , Timerosal/química , Compostos de Estanho/química , Volatilização
17.
Anal Chem ; 80(8): 2646-53, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18345693

RESUMO

A novel chemical ionization source for organic mass spectrometry is introduced. This new source uses a glow discharge in the flowing afterglow mode for the generation of excited species and ions. The direct-current gas discharge is operated in helium at atmospheric pressure; typical operating voltages and currents are around 500 V and 25 mA, respectively. The species generated by this atmospheric pressure glow discharge are mixed with ambient air to generate reagent ions (mostly ionized water clusters and NO+), which are then used for the ionization of gaseous organic compounds. A wide variety of substances, both polar and nonpolar, can be ionized. The resulting mass spectra generally show the parent molecular ion (M+ or MH+) with little or no fragmentation. Proton transfer from ionized water clusters has been identified as the main ionization pathway. However, the presence of radical molecular ions (M+) for some compounds indicates that other ionization mechanisms are also involved. The analytical capabilities of this source were evaluated with a time-of-flight mass spectrometer, and preliminary characterization shows very good stability, linearity, and sensitivity. Limits of detection in the single to tens of femtomole range are reported for selected compounds.

18.
Anal Chem ; 80(8): 2654-63, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18345694

RESUMO

The flowing afterglow-atmospheric pressure glow discharge (APGD) ionization source described in part 1 of this study (in this issue) is applied to the direct analysis of condensed-phase samples. When either liquids or solids are exposed to the ionizing beam of the APGD, strong signals for the molecular ions of substances present on their surfaces can be detected without compromising the integrity of the solid sample structure or sample substrate. As was observed for gas-phase compounds in part 1 of this study, both polar and nonpolar substances can be ionized and detected by mass spectrometry. The parent molecular ion (or its protonated counterpart) is usually the main spectral feature, with little or no fragmentation in evidence. Preliminary quantitative results show that this approach offers very good sensitivity (detection limits in the picogram regime are reported for several test compounds in part 1 of this study) and linear response to the analyte concentration. Examples of the application of this strategy to the analysis of real-world samples, such as the direct analysis of pharmaceutical compounds or foods is provided. The ability of this source to perform spatially resolved analysis is also demonstrated. Preliminary studies of the mechanisms of the reactions involved are described.

19.
Anal Chim Acta ; 952: 1-8, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28010838

RESUMO

A new direct-current microplasma-based flowing atmospheric pressure afterglow (FAPA) source was developed for use in ambient desorption-ionization mass spectrometry. The annular-shaped microplasma is formed in helium between two concentric stainless-steel capillaries that are separated by an alumina tube. Current-voltage characterization of the source shows that this version of the FAPA operates in the normal glow-discharge regime. A glass surface placed in the path of the helium afterglow reaches temperatures of up to approximately 400 °C; the temperature varies with distance from the source and helium flow rate through the source. Solid, liquid, and vapor samples were examined by means of a time-of-flight mass spectrometer. Results suggest that ionization occurs mainly through protonation, with only a small amount of fragmentation and adduct formation. The mass range of the source was shown to extend up to at least m/z 2722 for singly charged species. Limits of detection for several small organic molecules were in the sub-picomole range. Examination of competitive ionization revealed that signal suppression occurs only at high (mM) concentrations of competing substances.

20.
J Am Soc Mass Spectrom ; 28(2): 263-269, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27757823

RESUMO

The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA