Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NMR Biomed ; 28(12): 1688-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484968

RESUMO

The purpose of this study was to measure the regional change of magnetic susceptibility in human brain upon inhalation of 100% oxygen by MRI quantitative susceptibility mapping (QSM). Fourteen healthy volunteers were scanned in a 3 T MR scanner with a 3D multi-gradient-echo sequence while breathing medical air (normoxia) and pure oxygen (hyperoxia). QSM images and R2* maps were calculated. Mean susceptibility differences versus white matter were measured in regions of interest covering veins, gray matter (GM), and cerebrospinal fluid (CSF) under both conditions. Hyperoxia resulted in a strong susceptibility decrease in large veins (-154.4 ± 65.9 ppb, p < 10(-6)), in a smaller reduction in GM (-1.3 ± 1 ppb, p < 0.001), and in a susceptibility increase in ventricular CSF (3.8 ± 1.8 ppb, p < 10(-5)). The susceptibility decrease in veins implied an increase of venous oxygen saturation (SvO2) by 10.1 ± 4.0%. Compared with QSM, R2* was more seriously affected by long-distance effects not related to local tissue oxygenation and increased in cerebral frontal regions (3 ± 2 s(-1), p < 0.0004) due to paramagnetic molecular oxygen in cavities. The results highlight the potential of QSM to yield region-specific quantitative oxygenation information, and, thus, for applications such as oxygen-therapy monitoring or identification of hypoxic tumor tissue during radiotherapy planning.


Assuntos
Encéfalo/metabolismo , Hiperóxia/metabolismo , Angiografia por Ressonância Magnética/métodos , Oximetria/métodos , Oxigênio/administração & dosagem , Oxigênio/metabolismo , Administração por Inalação , Adulto , Encéfalo/patologia , Feminino , Humanos , Hiperóxia/patologia , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Adulto Jovem
2.
J Clin Imaging Sci ; 5: 1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806136

RESUMO

OBJECTIVES: This study aims to quantify the response of the transverse relaxation rate of the magnetic resonance (MR) signal of the cerebral tissue in healthy volunteers to the administration of air with step-wise increasing percentage of oxygen. MATERIALS AND METHODS: The transverse relaxation rate (R2*) of the MR signal was quantified in seven volunteers under respiratory intake of normobaric gas mixtures containing 21, 50, 75, and 100% oxygen, respectively. End-tidal breath composition, arterial blood saturation (SaO2), and heart pulse rate were monitored during the challenge. R2* maps were computed from multi-echo, gradient-echo magnetic resonance imaging (MRI) data, acquired at 3.0T. The average values in the segmented white matter (WM) and gray matter (GM) were tested by the analysis of variance (ANOVA), with Bonferroni post-hoc correction. The GM R2*-reactivity to hyperoxia was modeled using the Hill's equation. RESULTS: Graded hyperoxia resulted in a progressive and significant (P < 0.05) decrease of the R2* in GM. Under normoxia the GM-R2* was 17.2 ± 1.1 s(-1). At 75% O2 supply, the R2* had reached a saturation level, with 16.4 ± 0.7 s(-1) (P = 0.02), without a significant further decrease for 100% O2. The R2*-response of GM correlated positively with CO2 partial pressure (R = 0.69 ± 0.19) and negatively with SaO2 (R = -0.74 ± 0.17). The WM showed a similar progressive, but non-significant, decrease in the relaxation rates, with an increase in oxygen intake (P = 0.055). The Hill's model predicted a maximum R2* response of the GM, of 3.5%, with half the maximum at 68% oxygen concentration. CONCLUSIONS: The GM-R2* responds to hyperoxia in a concentration-dependent manner, suggesting that monitoring and modeling of the R2*-response may provide new oxygenation biomarkers for tumor therapy or assessment of cerebrovascular reactivity in patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA