Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6840, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891175

RESUMO

Diseases change over time, both phenotypically and in their underlying molecular processes. Though understanding disease progression dynamics is critical for diagnostics and treatment, capturing these dynamics is difficult due to their complexity and the high heterogeneity in disease development between individuals. We present TimeAx, an algorithm which builds a comparative framework for capturing disease dynamics using high-dimensional, short time-series data. We demonstrate the utility of TimeAx by studying disease progression dynamics for multiple diseases and data types. Notably, for urothelial bladder cancer tumorigenesis, we identify a stromal pro-invasion point on the disease progression axis, characterized by massive immune cell infiltration to the tumor microenvironment and increased mortality. Moreover, the continuous TimeAx model differentiates between early and late tumors within the same tumor subtype, uncovering molecular transitions and potential targetable pathways. Overall, we present a powerful approach for studying disease progression dynamics-providing improved molecular interpretability and clinical benefits for patient stratification and outcome prediction.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/patologia , Progressão da Doença , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA