RESUMO
Electro-optical effect-based liquid crystal devices have been extensively used in optical modulation techniques, in which the Kerr coefficient reflects the sensitivity of the liquid crystals and determines the strength of the device's operational electric field. The Peterlin-Stuart theory and the O'Konski model jointly indicate that a giant Kerr coefficient could be obtained in a material with both a large geometrical anisotropy and an intrinsic polarization, but such a material is not yet reported. Here we reveal a ferroelectric effect in a monolayer two-dimensional mineral vermiculite. A large geometrical anisotropy factor and a large inherent electric dipole together raise the record value of Kerr coefficient by an order of magnitude, till 3.0 × 10-4 m V-2. This finding enables an ultra-low operational electric field of 102-104 V m-1 and the fabrication of electro-optical devices with an inch-level electrode separation, which has not previously been practical. Because of its high ultraviolet stability (decay <1% under ultraviolet exposure for 1000 hours), large-scale production, and energy efficiency, prototypical displayable billboards have been fabricated for outdoor interactive scenes. This work provides new insights for both liquid crystal optics and two-dimensional ferroelectrics.
RESUMO
The Materials Genome Initiative aims to discover, develop, manufacture, and deploy advanced materials at twice the speed of conventional approaches. To achieve this, high-throughput characterization is essential for the rapid screening of candidate materials. In this study, a high-throughput scanning second-harmonic-generation microscope with automatic partitioning, accurate positioning, and fast scanning is developed that can rapidly probe and screen polar materials. Using this technique, typical ferroelectrics, including periodically poled lithium niobate crystals and PbZr0.2 Ti0.8 O3 (PZT) thin films are first investigated, whereby the microscopic domain structures are clearly revealed. This technique is then applied to a compositional-gradient (100-x)%BaTiO3 -x%SrTiO3 film and a thickness-gradient PZT film to demonstrate its high-throughput capabilities. Since the second-harmonic-generation signal is correlated with the macroscopic remnant polarization over the probed region determined by the laser spot, it is free of artifacts arising from leakage current and electrostatic interference, while materials' symmetries and domain structures must be carefully considered in the data analysis. It is believed that this work can help promote the high-throughput development of polar materials and contribute to the Materials Genome Initiative.
RESUMO
SnO2, a typical transition metal oxide, is a promising conversion-type electrode material with an ultrahigh theoretical specific capacity of 1494 mAh g-1. Nevertheless, the electrochemical performance of SnO2 electrode is limited by large volumetric changes (~300%) during the charge/discharge process, leading to rapid capacity decay, poor cyclic performance, and inferior rate capability. In order to overcome these bottlenecks, we develop highly ordered SnO2 nanopillar array as binder-free anodes for LIBs, which are realized by anodic aluminum oxide-assisted pulsed laser deposition. The as-synthesized SnO2 nanopillar exhibit an ultrahigh initial specific capacity of 1082 mAh g-1 and maintain a high specific capacity of 524/313 mAh g-1 after 1100/6500 cycles, outperforming SnO2 thin film-based anodes and other reported binder-free SnO2 anodes. Moreover, SnO2 nanopillar demonstrate excellent rate performance under high current density of 64 C (1 C = 782 mA g-1), delivering a specific capacity of 278 mAh g-1, which can be restored to 670 mAh g-1 after high-rate cycling. The superior electrochemical performance of SnO2 nanoarray can be attributed to the unique architecture of SnO2, where highly ordered SnO2 nanopillar array provided adequate room for volumetric expansion and ensured structural integrity during the lithiation/delithiation process. The current study presents an effective approach to mitigate the inferior cyclic performance of SnO2-based electrodes, offering a realistic prospect for its applications as next-generation energy storage devices.
RESUMO
Ferroelectric vortices formed through complex lattice-charge interactions have great potential in applications for future nanoelectronics such as memories. For practical applications, it is crucial to manipulate these topological states under external stimuli. Here, we apply mechanical loads to locally manipulate the vortices in a PbTiO3/SrTiO3 superlattice via atomically resolved in-situ scanning transmission electron microscopy. The vortices undergo a transition to the a-domain with in-plane polarization under external compressive stress and spontaneously recover after removal of the stress. We reveal the detailed transition process at the atomic scale and reproduce this numerically using phase-field simulations. These findings provide new pathways to control the exotic topological ferroelectric structures for future nanoelectronics and also valuable insights into understanding of lattice-charge interactions at nanoscale.
RESUMO
Recently, several captivating topological structures of electric dipole moments (e.g., vortex, flux closure) have been reported in ferroelectrics with reduced size/dimensions. However, accurate polarization distribution of these topological ferroelectric structures has never been experimentally obtained. We precisely measure the polarization distribution of an individual ferroelectric vortex in PbTiO3/SrTiO3 superlattices at the subunit cell level by using the atomically resolved integrated differential phase contrast imaging in an aberration-corrected scanning transmission electron microscope. We find, in vortices, that out-of-plane polarization is larger than in-plane polarization, and that downward polarization is larger than upward polarization. The polarization magnitude is closely related to tetragonality. Moreover, the contribution of the PbâO bond to total polarization is highly inhomogeneous in vortices. Our precise measurement at the subunit cell scale provides a sound foundation for mechanistic understanding of the structure and properties of a ferroelectric vortex and lattice-charge coupling phenomena in these topological ferroelectric structures.