Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7994): 329-337, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200294

RESUMO

Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1-4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5-7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.


Assuntos
Genoma Humano , Genômica , Migração Humana , Populações Escandinavas e Nórdicas , Humanos , Dinamarca/etnologia , Emigrantes e Imigrantes/história , Genótipo , Populações Escandinavas e Nórdicas/genética , Populações Escandinavas e Nórdicas/história , Migração Humana/história , Genoma Humano/genética , História Antiga , Pólen , Dieta/história , Caça/história , Fazendeiros/história , Cultura , Fenótipo , Conjuntos de Dados como Assunto
2.
Nature ; 625(7994): 301-311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200295

RESUMO

Western Eurasia witnessed several large-scale human migrations during the Holocene1-5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.


Assuntos
Genética Populacional , Genoma Humano , Migração Humana , Metagenômica , Humanos , Agricultura/história , Ásia Ocidental , Mar Negro , Diploide , Europa (Continente)/etnologia , Genótipo , História Antiga , Migração Humana/história , Caça/história , Camada de Gelo
3.
Am J Hum Genet ; 110(9): 1590-1599, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37683613

RESUMO

The island of St Helena played a crucial role in the suppression of the transatlantic slave trade. Strategically located in the middle of the South Atlantic, it served as a staging post for the Royal Navy and reception point for enslaved Africans who had been "liberated" from slave ships intercepted by the British. In total, St Helena received approximately 27,000 liberated Africans between 1840 and 1867. Written sources suggest that the majority of these individuals came from West Central Africa, but their precise origins are unknown. Here, we report the results of ancient DNA analyses that we conducted as part of a wider effort to commemorate St Helena's liberated Africans and to restore knowledge of their lives and experiences. We generated partial genomes (0.1-0.5×) for 20 individuals whose remains had been recovered during archaeological excavations on the island. We compared their genomes with genotype data for over 3,000 present-day individuals from 90 populations across sub-Saharan Africa and conclude that the individuals most likely originated from different source populations within the general area between northern Angola and Gabon. We also find that the majority (17/20) of the individuals were male, supporting a well-documented sex bias in the latter phase of the transatlantic slave trade. The study expands our understanding of St Helena's liberated African community and illustrates how ancient DNA analyses can be used to investigate the origins and identities of individuals whose lives were bound up in the story of slavery and its abolition.


Assuntos
População Africana , Pessoas Escravizadas , Humanos , Feminino , Masculino , DNA Antigo , População Negra/genética , Genótipo
4.
Nature ; 585(7825): 390-396, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939067

RESUMO

The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent.


Assuntos
Fluxo Gênico/genética , Genética Populacional , Genoma Humano/genética , Genômica , Migração Humana/história , Alelos , Conjuntos de Dados como Assunto , Inglaterra , Evolução Molecular , Groenlândia , História Medieval , Humanos , Imunidade/genética , Irlanda , Lactase/genética , Lactase/metabolismo , Masculino , Países Escandinavos e Nórdicos , Seleção Genética , Análise Espaço-Temporal , Adulto Jovem
5.
Nature ; 570(7760): 182-188, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168093

RESUMO

Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas.


Assuntos
Genoma Humano/genética , Migração Humana/história , Ásia/etnologia , DNA Antigo/análise , Europa (Continente)/etnologia , Pool Gênico , Haplótipos , História do Século XV , História Antiga , História Medieval , Humanos , Indígenas Norte-Americanos , Masculino , Sibéria/etnologia
7.
PLoS Comput Biol ; 19(6): e1011148, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285390

RESUMO

Current mitochondrial DNA (mtDNA) haplogroup classification tools map reads to a single reference genome and perform inference based on the detected mutations to this reference. This approach biases haplogroup assignments towards the reference and prohibits accurate calculations of the uncertainty in assignment. We present HaploCart, a probabilistic mtDNA haplogroup classifier which uses a pangenomic reference graph framework together with principles of Bayesian inference. We demonstrate that our approach significantly outperforms available tools by being more robust to lower coverage or incomplete consensus sequences and producing phylogenetically-aware confidence scores that are unbiased towards any haplogroup. HaploCart is available both as a command-line tool and through a user-friendly web interface. The C++ program accepts as input consensus FASTA, FASTQ, or GAM files, and outputs a text file with the haplogroup assignments of the samples along with the level of confidence in the assignments. Our work considerably reduces the amount of data required to obtain a confident mitochondrial haplogroup assignment.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , DNA Mitocondrial/genética , Teorema de Bayes , Haplótipos/genética , Mitocôndrias/genética , Mutação
9.
Nature ; 557(7705): 369-374, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743675

RESUMO

For thousands of years the Eurasian steppes have been a centre of human migrations and cultural change. Here we sequence the genomes of 137 ancient humans (about 1× average coverage), covering a period of 4,000 years, to understand the population history of the Eurasian steppes after the Bronze Age migrations. We find that the genetics of the Scythian groups that dominated the Eurasian steppes throughout the Iron Age were highly structured, with diverse origins comprising Late Bronze Age herders, European farmers and southern Siberian hunter-gatherers. Later, Scythians admixed with the eastern steppe nomads who formed the Xiongnu confederations, and moved westward in about the second or third century BC, forming the Hun traditions in the fourth-fifth century AD, and carrying with them plague that was basal to the Justinian plague. These nomads were further admixed with East Asian groups during several short-term khanates in the Medieval period. These historical events transformed the Eurasian steppes from being inhabited by Indo-European speakers of largely West Eurasian ancestry to the mostly Turkic-speaking groups of the present day, who are primarily of East Asian ancestry.


Assuntos
Povo Asiático/genética , Genoma Humano/genética , Pradaria , Filogenia , População Branca/genética , Ásia/etnologia , Europa (Continente)/etnologia , Fazendeiros/história , História Antiga , Migração Humana/história , Humanos
10.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27654912

RESUMO

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Genômica , Taxa de Mutação , Filogenia , Grupos Raciais/genética , Animais , Austrália , População Negra/genética , Conjuntos de Dados como Assunto , Genética Populacional , História Antiga , Migração Humana/história , Humanos , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Homem de Neandertal/genética , Nova Guiné , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
13.
Bioinformatics ; 36(3): 828-841, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504166

RESUMO

MOTIVATION: The presence of present-day human contaminating DNA fragments is one of the challenges defining ancient DNA (aDNA) research. This is especially relevant to the ancient human DNA field where it is difficult to distinguish endogenous molecules from human contaminants due to their genetic similarity. Recently, with the advent of high-throughput sequencing and new aDNA protocols, hundreds of ancient human genomes have become available. Contamination in those genomes has been measured with computational methods often developed specifically for these empirical studies. Consequently, some of these methods have not been implemented and tested for general use while few are aimed at low-depth nuclear data, a common feature in aDNA datasets. RESULTS: We develop a new X-chromosome-based maximum likelihood method for estimating present-day human contamination in low-depth sequencing data from male individuals. We implement our method for general use, assess its performance under conditions typical of ancient human DNA research, and compare it to previous nuclear data-based methods through extensive simulations. For low-depth data, we show that existing methods can produce unusable estimates or substantially underestimate contamination. In contrast, our method provides accurate estimates for a depth of coverage as low as 0.5× on the X-chromosome when contamination is below 25%. Moreover, our method still yields meaningful estimates in very challenging situations, i.e. when the contaminant and the target come from closely related populations or with increased error rates. With a running time below 5 min, our method is applicable to large scale aDNA genomic studies. AVAILABILITY AND IMPLEMENTATION: The method is implemented in C++ and R and is available in github.com/sapfo/contaminationX and popgen.dk/angsd.


Assuntos
DNA Antigo , Sequenciamento de Nucleotídeos em Larga Escala , Cromossomos , Humanos , Funções Verossimilhança , Masculino , Análise de Sequência de DNA
14.
Proc Natl Acad Sci U S A ; 115(10): 2341-2346, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463742

RESUMO

The Caribbean was one of the last parts of the Americas to be settled by humans, but how and when the islands were first occupied remains a matter of debate. Ancient DNA can help answering these questions, but the work has been hampered by poor DNA preservation. We report the genome sequence of a 1,000-year-old Lucayan Taino individual recovered from the site of Preacher's Cave in the Bahamas. We sequenced her genome to 12.4-fold coverage and show that she is genetically most closely related to present-day Arawakan speakers from northern South America, suggesting that the ancestors of the Lucayans originated there. Further, we find no evidence for recent inbreeding or isolation in the ancient genome, suggesting that the Lucayans had a relatively large effective population size. Finally, we show that the native American components in some present-day Caribbean genomes are closely related to the ancient Taino, demonstrating an element of continuity between precontact populations and present-day Latino populations in the Caribbean.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , Genoma Humano/genética , Migração Humana/estatística & dados numéricos , Adulto , Arqueologia , Bahamas , DNA Antigo , DNA Mitocondrial/genética , Feminino , Genética Populacional , Genômica , Hispânico ou Latino/genética , História Antiga , Migração Humana/história , Humanos , Masculino , Paleontologia , Filogenia , Adulto Jovem
15.
Nature ; 513(7518): 409-13, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25230663

RESUMO

We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.


Assuntos
Genoma Humano/genética , População Branca/classificação , População Branca/genética , Agricultura/história , Ásia/etnologia , Europa (Continente) , História Antiga , Humanos , Dinâmica Populacional , Análise de Componente Principal , Recursos Humanos
16.
Nature ; 505(7481): 43-9, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24352235

RESUMO

We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.


Assuntos
Fósseis , Genoma/genética , Homem de Neandertal/genética , África , Animais , Cavernas , Variações do Número de Cópias de DNA/genética , Feminino , Fluxo Gênico/genética , Frequência do Gene , Heterozigoto , Humanos , Endogamia , Modelos Genéticos , Homem de Neandertal/classificação , Filogenia , Densidade Demográfica , Sibéria/etnologia , Falanges dos Dedos do Pé/anatomia & histologia
17.
Bioinformatics ; 34(8): 1398-1400, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29186325

RESUMO

Motivation: Research projects involving population genomics routinely need to store genotyping information, population allele counts, combine files from different samples, query the data and export it to various formats. This is often done using bespoke in-house scripts, which cannot be easily adapted to new projects and seldom constitute reproducible workflows. Results: We introduce glactools, a set of command-line utilities that can import data from genotypes or population-wide allele counts into an intermediate representation, compute various operations on it and export the data to several file formats used by population genetics software. This intermediate format can take two forms, one to store per-individual genotype likelihoods and a second for allele counts from one or more individuals. glactools allows users to perform operations such as intersecting datasets, merging individuals into populations, creating subsets, perform queries (e.g. return sites where a given population does not share an allele with a second one) and compute summary statistics to answer biologically relevant questions. Availability and implementation: glactools is freely available for use under the GPL. It requires a C ++ compiler and the htslib library. The source code and the instructions about how to download test data are available on the website (https://grenaud.github.io/glactools/). Contact: gabriel.reno@gmail.com. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Alelos , Genótipo , Metagenômica/métodos , Software , Genética Populacional/métodos , Humanos , Probabilidade
18.
PLoS Genet ; 12(4): e1005972, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27049965

RESUMO

When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters-including drift times and admixture rates-for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called 'Demographic Inference with Contamination and Error' (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%.


Assuntos
Contaminação por DNA , DNA/genética , Deriva Genética , Homem de Neandertal/genética , Algoritmos , Animais , Sequência de Bases , Simulação por Computador , DNA Mitocondrial/genética , Fósseis , Genética Populacional , Humanos , Cadeias de Markov , Método de Monte Carlo , Análise de Sequência de DNA , Software
19.
PLoS Genet ; 12(11): e1006444, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27824857

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1005972.].

20.
Bioinformatics ; 33(4): 577-579, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27794556

RESUMO

Summary: Ancient DNA has emerged as a remarkable tool to infer the history of extinct species and past populations. However, many of its characteristics, such as extensive fragmentation, damage and contamination, can influence downstream analyses. To help investigators measure how these could impact their analyses in silico , we have developed gargammel, a package that simulates ancient DNA fragments given a set of known reference genomes. Our package simulates the entire molecular process from post-mortem DNA fragmentation and DNA damage to experimental sequencing errors, and reproduces most common bias observed in ancient DNA datasets. Availability and Implementation: The package is publicly available on github: https://grenaud.github.io/gargammel/ and released under the GPL. Contact: gabriel.renaud@snm.ku.dk. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Simulação por Computador , Dano ao DNA , DNA Antigo/química , Mudanças Depois da Morte , Software , Animais , Contaminação por DNA , Humanos , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA