Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Genet ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937076

RESUMO

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.

2.
Neurol Genet ; 10(1): e200118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170134

RESUMO

Objectives: Paroxysmal ataxia is typically characterized by early-onset attacks of cerebellar ataxia. Late-onset cerebellar ataxia (LOCA) comprises a group of neurodegenerative disorders mainly characterized by adult-onset progressive cerebellar ataxia. A deep intronic expansion of a GAA triplet in the FGF14 gene encoding fibroblast growth factor 14 has recently been identified as a frequent cause of LOCA. Methods: We describe a patient with paroxysmal ataxia/dysarthria due to a FGF14 repeat expansion and 3 affected family members. Results: The 4 patients had paroxysmal ataxia/dysarthria occurring between 45 and 50 years as the initial manifestation of a FGF14 repeat expansion. The index case was investigated in detail. We have provided a video showing one of her paroxysmal episodes that could be triggered by alcohol, coffee, exertion, emotion, or cigarette smoking. Brain MRI revealed mild cerebellar atrophy, and oculography showed a subclinical downbeat nystagmus. Treatment with acetazolamide resulted in remarkable improvement. Discussion: Paroxysmal dysarthria/ataxia should prompt the clinician to test for FGF14 repeat expansion/SCA27B, especially when the paroxysmal attacks are associated with late-onset cerebellar ataxia and/or a family history consistent with a dominant disorder.

3.
Clin Transl Med ; 14(1): e1504, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38279833

RESUMO

Hereditary ataxias, especially when presenting sporadically in adulthood, present a particular diagnostic challenge owing to their great clinical and genetic heterogeneity. Currently, up to 75% of such patients remain without a genetic diagnosis. In an era of emerging disease-modifying gene-stratified therapies, the identification of causative alleles has become increasingly important. Over the past few years, the implementation of advanced bioinformatics tools and long-read sequencing has allowed the identification of a number of novel repeat expansion disorders, such as the recently described spinocerebellar ataxia 27B (SCA27B) caused by a (GAA)•(TTC) repeat expansion in intron 1 of the fibroblast growth factor 14 (FGF14) gene. SCA27B is rapidly gaining recognition as one of the most common forms of adult-onset hereditary ataxia, with several studies showing that it accounts for a substantial number (9-61%) of previously undiagnosed cases from different cohorts. First natural history studies and multiple reports have already outlined the progression and core phenotype of this novel disease, which consists of a late-onset slowly progressive pan-cerebellar syndrome that is frequently associated with cerebellar oculomotor signs, such as downbeat nystagmus, and episodic symptoms. Furthermore, preliminary studies in patients with SCA27B have shown promising symptomatic benefits of 4-aminopyridine, an already marketed drug. This review describes the current knowledge of the genetic and molecular basis, epidemiology, clinical features and prospective treatment strategies in SCA27B.


Assuntos
Ataxias Espinocerebelares , Adulto , Humanos , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética , Ataxia/complicações , Fenótipo
4.
J Neurol ; 271(4): 2078-2085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263489

RESUMO

BACKGROUND: Whether spinocerebellar ataxia 27B (SCA27B) may present as a cerebellar multiple system atrophy (MSA-C) mimic remains undetermined. OBJECTIVES: To assess the prevalence of FGF14 (GAA)≥250 expansions in patients with MSA-C, to compare SCA27B and MSA-C clinical presentation and natural history. METHODS: FGF14 expansion screening combined with longitudinal deep-phenotyping in a prospective cohort of 195 patients with sporadic late-onset cerebellar ataxia. RESULTS: After a mean disease duration of 6.4 years, 111 patients were not meeting criteria for MSA-C while 24 and 60 patients had a final diagnosis of possible and probable MSA-C, respectively. 16 patients carried an FGF14 (GAA)≥250 expansion in the group not meeting MSA-C criteria (14.4%), 3 patients in the possible MSA-C group (12.5%), but none among probable MSA-C cases. SCA27B patients were evolving more slowly than probable MSA-C patients. CONCLUSIONS: FGF14 (GAA)≥250 expansion may account for MSA look-alike cases and should be screened among slow progressors.


Assuntos
Atrofia de Múltiplos Sistemas , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Estudos Prospectivos , Ataxias Espinocerebelares/diagnóstico , Cerebelo , Degenerações Espinocerebelares/diagnóstico
5.
J Neurol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003427

RESUMO

Spastic paraplegia type 3A (SPG3A) is the second most common form of hereditary spastic paraplegia (HSP). This autosomal-dominant-inherited motor disorder is caused by heterozygous variants in the ATL1 gene which usually presents as a pure childhood-onset spastic paraplegia. Affected individuals present muscle weakness and spasticity in the lower limbs, with symptom onset in the first decade of life. Individuals with SPG3A typically present a slow progression and remain ambulatory throughout their life. Here we report three unrelated individuals presenting with very-early-onset (before 7 months) complex, and severe HSP phenotypes (axial hypotonia, spastic quadriplegia, dystonia, seizures and intellectual disability). For 2 of the 3 patients, these phenotypes led to the initial diagnosis of cerebral palsy (CP). These individuals carried novel ATL1 pathogenic variants (a de novo ATL1 missense p.(Lys406Glu), a homozygous frameshift p.(Arg403Glufs*3) and a homozygous missense variant (p.Tyr367His)). The parents carrying the heterozygous frameshift and missense variants were asymptomatic. Through these observations, we increase the knowledge on genotype-phenotype correlations in SPG3A and offer additional proof for possible autosomal recessive forms of SPG3A, while raising awareness on these exceptional phenotypes. Their ability to mimic CP also implies that genetic testing should be considered for patients with atypical forms of CP, given the implications for genetic counseling.

6.
medRxiv ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405699

RESUMO

Background: GAA-FGF14 ataxia (SCA27B) is a recently reported late-onset ataxia caused by a GAA repeat expansion in intron 1 of the FGF14 gene. Initial studies revealed cerebellar atrophy in 74-97% of patients. A more detailed brain imaging characterization of GAA-FGF14 ataxia is now needed to provide supportive diagnostic features and earlier disease recognition. Methods: We performed a retrospective review of the brain MRIs of 35 patients (median age at MRI 63 years; range 28-88 years) from Quebec (n=27), Nancy (n=3), Perth (n=3) and Bengaluru (n=2) to assess the presence of atrophy in vermis, cerebellar hemispheres, brainstem, cerebral hemispheres, and corpus callosum, as well as white matter involvement. Following the identification of the superior cerebellar peduncles (SCPs) involvement, we verified its presence in 54 GAA-FGF14 ataxia patients from four independent cohorts (Tübingen n=29; Donostia n=12; Innsbruck n=7; Cantabria n=6). To assess lobular atrophy, we performed quantitative cerebellar segmentation in 5 affected subjects with available 3D T1-weighted images and matched controls. Results: Cerebellar atrophy was documented in 33 subjects (94.3%). We observed SCP involvement in 22 subjects (62.8%) and confirmed this finding in 30/54 (55.6%) subjects from the validation cohorts. Cerebellar segmentation showed reduced mean volumes of lobules X and IV in the 5 affected individuals. Conclusions: Cerebellar atrophy is a key feature of GAA-FGF14 ataxia. The frequent SCP involvement observed in different cohorts may facilitate the diagnosis. The predominant involvement of lobule X correlates with the frequently observed downbeat nystagmus.

7.
medRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39006414

RESUMO

Spinocerebellar ataxia 27B (SCA27B) is a common autosomal dominant ataxia caused by an intronic GAA•TTC repeat expansion in FGF14 . Neuropathological studies have shown that neuronal loss is largely restricted to the cerebellum. Although the repeat locus is highly unstable during intergenerational transmission, it remains unknown whether it exhibits cerebral mosaicism and progressive instability throughout life. We conducted an analysis of the FGF14 GAA•TTC repeat somatic instability across 156 serial blood samples from 69 individuals, fibroblasts, induced pluripotent stem cells, and post-mortem brain tissues from six controls and six patients with SCA27B, alongside methylation profiling using targeted long-read sequencing. Peripheral tissues exhibited minimal somatic instability, which did not significantly change over periods of more than 20 years. In post-mortem brains, the GAA•TTC repeat was remarkably stable across all regions, except in the cerebellar hemispheres and vermis. The levels of somatic expansion in the cerebellar hemispheres and vermis were, on average, 3.15 and 2.72 times greater relative to other examined brain regions, respectively. Additionally, levels of somatic expansion in the brain increased with repeat length and tissue expression of FGF14 . We found no significant difference in methylation of wild-type and expanded FGF14 alleles in post-mortem cerebellar hemispheres between patients and controls. In conclusion, our study revealed that the FGF14 GAA•TTC repeat exhibits a cerebellar-specific expansion bias, which may explain the pure and late-onset cerebellar involvement in SCA27B.

8.
Nat Genet ; 56(7): 1366-1370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937606

RESUMO

The factors driving or preventing pathological expansion of tandem repeats remain largely unknown. Here, we assessed the FGF14 (GAA)·(TTC) repeat locus in 2,530 individuals by long-read and Sanger sequencing and identified a common 5'-flanking variant in 70.34% of alleles analyzed (3,463/4,923) that represents the phylogenetically ancestral allele and is present on all major haplotypes. This common sequence variation is present nearly exclusively on nonpathogenic alleles with fewer than 30 GAA-pure triplets and is associated with enhanced stability of the repeat locus upon intergenerational transmission and increased Fiber-seq chromatin accessibility.


Assuntos
Alelos , Fatores de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Haplótipos , Variação Genética , Loci Gênicos
9.
EBioMedicine ; 99: 104931, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150853

RESUMO

BACKGROUND: SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability. METHODS: We sized this repeat in 1876 individuals from France sampled for research purposes in this cross-sectional study: 845 index cases with cerebellar ataxia and 324 affected relatives, 475 controls, as well as 119 cases with spastic paraplegia, and 113 with familial essential tremor. FINDINGS: A higher frequency of expanded allele carriers in index cases with ataxia was significant only above 300 GAA repeats (10.1%, n = 85) compared with controls (1.1%, n = 5) (p < 0.0001) whereas GAA250-299 alleles were detected in 1.7% of both groups. Eight of 14 index cases with GAA250-299 repeats had other causal pathogenic variants (4/14) and/or discordance of co-segregation (5/14), arguing against GAA causality. We compared the clinical signs in 127 GAA≥300 carriers to cases with non-expanded GAA ataxia resulting in defining a key phenotype triad: onset after 45 years, downbeat nystagmus, episodic ataxic features including diplopia; and a frequent absence of dysarthria. All maternally transmitted alleles above 100 GAA were unstable with a median expansion of +18 repeats per generation (r2 = 0.44; p < 0.0001). In comparison, paternally transmitted alleles above 100 GAA mostly decreased in size (-15 GAA (r2 = 0.63; p < 0.0001)), resulting in the transmission bias observed in SCA27B pedigrees. INTERPRETATION: SCA27B diagnosis must consider both the phenotype and GAA expansion size. In carriers of GAA250-299 repeats, the absence of documented familial transmission and a presentation deviating from the key SCA27B phenotype, should prompt the search for an alternative cause. Affected fathers have a reduced risk of having affected children, which has potential implications for genetic counseling. FUNDING: This work was supported by the Fondation pour la Recherche Médicale, grant number 13338 to JLM, the Association Connaître les Syndrome Cérébelleux - France (to GS) and by the European Union's Horizon 2020 research and innovation program under grant agreement No 779257 ("SOLVE-RD" to GS). DP holds a Fellowship award from the Canadian Institutes of Health Research (CIHR). SK received a grant (01GM1905C) from the Federal Ministry of Education and Research, Germany, through the TreatHSP network. This work was supported by the Australian Government National Health and Medical Research Council grants (GNT2001513 and MRFF2007677) to MB and PJL.


Assuntos
Ataxia Cerebelar , Ataxia de Friedreich , Criança , Humanos , Ataxia/diagnóstico , Ataxia/genética , Austrália , Canadá , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Estudos Transversais , Ataxia de Friedreich/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA