Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Health Geogr ; 22(1): 15, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344837

RESUMO

Overcrowding in densely populated urban areas is increasingly becoming an issue for mental health disorders. Yet, only few studies have examined the association between overcrowding in cities and physiological stress responses. Thus, this study employed wearable sensors (a wearable camera, an Empatica E4 wristband and a smartphone-based GPS) to assess the association between overcrowding and human physiological stress response in four types of urban contexts (green space, transit space, commercial space, and blue space). A case study with 26 participants was conducted in Salzburg, Austria. We used Mask R-CNN to detect elements related to overcrowding such as human crowds, sitting facilities, vehicles and bikes from first-person video data collected by wearable cameras, and calculated a change score (CS) to assess human physiological stress response based on galvanic skin response (GSR) and skin temperature from the physiological data collected by the wristband, then this study used statistical and spatial analysis to assess the association between the change score and the above elements. The results demonstrate the feasibility of using sensor-based measurement and quantitative analysis to investigate the relationship between human stress and overcrowding in relation to different urban elements. The findings of this study indicate the importance of considering human crowds, sitting facilities, vehicles and bikes to assess the impact of overcrowding on human stress at street level.


Assuntos
Estresse Fisiológico , Dispositivos Eletrônicos Vestíveis , Humanos , Áustria/epidemiologia , Smartphone , Aglomeração
2.
Sensors (Basel) ; 22(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015730

RESUMO

Human-centered applications using wearable sensors in combination with machine learning have received a great deal of attention in the last couple of years. At the same time, wearable sensors have also evolved and are now able to accurately measure physiological signals and are, therefore, suitable for detecting body reactions to stress. The field of machine learning, or more precisely, deep learning, has been able to produce outstanding results. However, in order to produce these good results, large amounts of labeled data are needed, which, in the context of physiological data related to stress detection, are a great challenge to collect, as they usually require costly experiments or expert knowledge. This usually results in an imbalanced and small dataset, which makes it difficult to train a deep learning algorithm. In recent studies, this problem is tackled with data augmentation via a Generative Adversarial Network (GAN). Conditional GANs (cGAN) are particularly suitable for this as they provide the opportunity to feed auxiliary information such as a class label into the training process to generate labeled data. However, it has been found that during the training process of GANs, different problems usually occur, such as mode collapse or vanishing gradients. To tackle the problems mentioned above, we propose a Long Short-Term Memory (LSTM) network, combined with a Fully Convolutional Network (FCN) cGAN architecture, with an additional diversity term to generate synthetic physiological data, which are used to augment the training dataset to improve the performance of a binary classifier for stress detection. We evaluated the methodology on our collected physiological measurement dataset, and we were able to show that using the method, the performance of an LSTM and an FCN classifier could be improved. Further, we showed that the generated data could not be distinguished from the real data any longer.


Assuntos
Aprendizado de Máquina , Dispositivos Eletrônicos Vestíveis , Algoritmos , Humanos , Fatores de Tempo
3.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015881

RESUMO

Field measurement campaigns with traffic participants using wearable sensors and questionnaires can be challenging to carry out because of inconsistent interfaces across manufacturers for accessing sensor data and campaign-specific questionnaire contents bear large potential for errors. We present an app able to consolidate data from multiple technical sensors and questionnaires. The functionality includes providing feedback for correct sensor platform mounting, accessing and storing all sensor and questionnaire data in a uniform data structure. To do this, the app implements a sensor data bus class that unifies data from technical sensors and questionnaires. The app can also be extended to accommodate other sensor platforms provided they have a suitable API. We also describe a database structure holding the data from multiple campaigns and test subjects in a privacy preserving fashion. Finally, we identify some potential issues and hints that practitioners may encounter when conducting a measurement campaign.


Assuntos
Aplicativos Móveis , Dispositivos Eletrônicos Vestíveis , Bases de Dados Factuais , Emoções , Humanos , Inquéritos e Questionários
4.
Sensors (Basel) ; 22(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214584

RESUMO

Trajectory data represent an essential source of information on travel behaviors and human mobility patterns, assuming a central role in a wide range of services related to transportation planning, personalized recommendation strategies, and resource management plans. The main issue when dealing with trajectory recordings, however, is characterized by temporary losses in the data collection, causing possible spatial-temporal gaps and missing trajectory segments. This is especially critical in those use cases based on non-repetitive individual motion traces, when the user's missing information cannot be directly reconstructed due to the absence of historical individual repetitive routes. Inserted in the context of location-based trajectory modeling, we tackle the problem by proposing a technical parallelism with the natural language processing domain. Specifically, we introduce the use of the Bidirectional Encoder Representations from Transformers (BERT), a state-of-the-art language representation model, into the trajectory processing research field. By training deep bidirectional representations from unlabeled location sequences, jointly conditioned on both left and right context, we derive an explicit predicted estimation of the missing locations along the trace. The proposed framework, named TraceBERT, was tested on a real-world large-scale trajectory dataset of short-term tourists, exploring an effective attempt of adapting advanced language modeling approaches into mobility-based applications and demonstrating a prominent potential on trajectory reconstruction over traditional statistical approaches.


Assuntos
Idioma , Processamento de Linguagem Natural , Fontes de Energia Elétrica , Estudos de Viabilidade , Humanos
5.
Cartogr Geogr Inf Sci ; 48(5): 432-448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566497

RESUMO

Mobile map applications are typically used by a broad range of users. Users can be diverse in their context attributes (e.g. map use experience, activities during map use), and several previous user experience (UX) studies have focused on understanding how some contextual factors influence the UX for designing maps that satisfy users' needs. A need for research remains to evaluate the relationship between user context, UX, and variants of mobile map element design. In this article, we present our research investigating the interplay of these factors through an empirical user study with citizens in Austria. We created an online survey and generated 84 map variations, combining seven map-related tasks, three base map styles, two map detail densities, and two time-pressure variants. We tested these map variations with 107 survey participants and related their UX to user context. Map-related tasks emerged as a dominant factor modifying the map design UX. Further results showed that interactivity loaded map-related tasks were aided when paired with low detail-dense base maps, contrasting overlay features. We recommend future research to analyze an extended set of context attributes with additional participant data, to evaluate dynamic variations in context, and to find ways to dynamically monitor mobile map design UX.

6.
Cartogr Geogr Inf Sci ; 47(1): 28-45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104165

RESUMO

A long-standing question in GIScience is whether geographic information systems (GIS) facilitates an adequate quantifiable representation of the concept of place. Considering the difficulties of quantifying elusive concepts related to place, several researchers focus on more tangible dimensions of the human understanding of place. The most common approaches are semantic enrichment of spatial information and holistic conceptualization of the notion of place. However, these approaches give emphasis on either space or human meaning, or they mainly exist as concepts without practically proven usable artifacts. A partial answer to this problem was proposed by the function-based model that treats place as functional space. This paper focuses primarily on the level of composition, describing and formalizing it as a rule-based framework with the following objectives: (a) contribute to the formalization efforts of the notion of place and its integration within GIS and (b) maintain tangible properties intertwined with the human understanding of place. The operationalization potential of the proposed framework is illustrated with an example of identifying the shopping areas in an urban region. The results show that the proposed model is able to capture all shopping malls as well as other areas that are not explicitly labeled as such but still function similarly to a shopping mall.

7.
Sensors (Basel) ; 19(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615054

RESUMO

Wearable sensors are increasingly used in research, as well as for personal and private purposes. A variety of scientific studies are based on physiological measurements from such rather low-cost wearables. That said, how accurate are such measurements compared to measurements from well-calibrated, high-quality laboratory equipment used in psychological and medical research? The answer to this question, undoubtedly impacts the reliability of a study's results. In this paper, we demonstrate an approach to quantify the accuracy of low-cost wearables in comparison to high-quality laboratory sensors. We therefore developed a benchmark framework for physiological sensors that covers the entire workflow from sensor data acquisition to the computation and interpretation of diverse correlation and similarity metrics. We evaluated this framework based on a study with 18 participants. Each participant was equipped with one high-quality laboratory sensor and two wearables. These three sensors simultaneously measured the physiological parameters such as heart rate and galvanic skin response, while the participant was cycling on an ergometer following a predefined routine. The results of our benchmarking show that cardiovascular parameters (heart rate, inter-beat interval, heart rate variability) yield very high correlations and similarities. Measurement of galvanic skin response, which is a more delicate undertaking, resulted in lower, but still reasonable correlations and similarities. We conclude that the benchmarked wearables provide physiological measurements such as heart rate and inter-beat interval with an accuracy close to that of the professional high-end sensor, but the accuracy varies more for other parameters, such as galvanic skin response.


Assuntos
Benchmarking , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Feminino , Humanos , Modelos Lineares , Masculino , Adulto Jovem
8.
Sensors (Basel) ; 19(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484366

RESUMO

There is a rich repertoire of methods for stress detection using various physiological signals and algorithms. However, there is still a gap in research efforts moving from laboratory studies to real-world settings. A small number of research has verified when a physiological response is a reaction to an extrinsic stimulus of the participant's environment in real-world settings. Typically, physiological signals are correlated with the spatial characteristics of the physical environment, supported by video records or interviews. The present research aims to bridge the gap between laboratory settings and real-world field studies by introducing a new algorithm that leverages the capabilities of wearable physiological sensors to detect moments of stress (MOS). We propose a rule-based algorithm based on galvanic skin response and skin temperature, combing empirical findings with expert knowledge to ensure transferability between laboratory settings and real-world field studies. To verify our algorithm, we carried out a laboratory experiment to create a "gold standard" of physiological responses to stressors. We validated the algorithm in real-world field studies using a mixed-method approach by spatially correlating the participant's perceived stress, geo-located questionnaires, and the corresponding real-world situation from the video. Results show that the algorithm detects MOS with 84% accuracy, showing high correlations between measured (by wearable sensors), reported (by questionnaires and eDiary entries), and recorded (by video) stress events. The urban stressors that were identified in the real-world studies originate from traffic congestion, dangerous driving situations, and crowded areas such as tourist attractions. The presented research can enhance stress detection in real life and may thus foster a better understanding of circumstances that bring about physiological stress in humans.


Assuntos
Dispositivos Eletrônicos Vestíveis , Algoritmos , Humanos , Estresse Fisiológico/fisiologia
9.
Sensors (Basel) ; 17(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186080

RESUMO

In the first hours of a disaster, up-to-date information about the area of interest is crucial for effective disaster management. However, due to the delay induced by collecting and analysing satellite imagery, disaster management systems like the Copernicus Emergency Management Service (EMS) are currently not able to provide information products until up to 48-72 h after a disaster event has occurred. While satellite imagery is still a valuable source for disaster management, information products can be improved through complementing them with user-generated data like social media posts or crowdsourced data. The advantage of these new kinds of data is that they are continuously produced in a timely fashion because users actively participate throughout an event and share related information. The research project Evolution of Emergency Copernicus services (E2mC) aims to integrate these novel data into a new EMS service component called Witness, which is presented in this paper. Like this, the timeliness and accuracy of geospatial information products provided to civil protection authorities can be improved through leveraging user-generated data. This paper sketches the developed system architecture, describes applicable scenarios and presents several preliminary case studies, providing evidence that the scientific and operational goals have been achieved.


Assuntos
Crowdsourcing , Sistemas Computacionais , Desastres , Serviços Médicos de Emergência , Mídias Sociais , Fatores de Tempo
10.
Sensors (Basel) ; 15(7): 17013-35, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26184221

RESUMO

In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today's technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different types of contextual information, thus providing an additional, namely the geo-spatial perspective on the future development of smart cities.

11.
Sci Rep ; 14(1): 18227, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107395

RESUMO

Identification of Aedes aegypti breeding hotspots is essential for the implementation of targeted vector control strategies and thus the prevention of several mosquito-borne diseases worldwide. Training computer vision models on satellite and street view imagery in the municipality of Rio de Janeiro, we analyzed the correlation between the density of common breeding grounds and Aedes aegypti infestation measured by ovitraps on a monthly basis between 2019 and 2022. Our findings emphasized the significance (p ≤ 0.05) of micro-habitat proxies generated through object detection, allowing to explain high spatial variance in urban abundance of Aedes aegypti immatures. Water tanks, non-mounted car tires, plastic bags, potted plants, and storm drains positively correlated with Aedes aegypti egg and larva counts considering a 1000 m mosquito flight range buffer around 2700 ovitrap locations, while dumpsters, small trash bins, and large trash bins exhibited a negative association. This complementary application of satellite and street view imagery opens the pathway for high-resolution interpolation of entomological surveillance data and has the potential to optimize vector control strategies. Consequently it supports the mitigation of emerging infectious diseases transmitted by Aedes aegypti, such as dengue, chikungunya, and Zika, which cause thousands of deaths each year.


Assuntos
Aedes , Mosquitos Vetores , Animais , Aedes/fisiologia , Mosquitos Vetores/fisiologia , Brasil , Imagens de Satélites/métodos , Cidades , Controle de Mosquitos/métodos , Cruzamento , Ecossistema , Larva/fisiologia
12.
PLoS One ; 18(3): e0282942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36921000

RESUMO

Twitter location inference methods are developed with the purpose of increasing the percentage of geotagged tweets by inferring locations on a non-geotagged dataset. For validation of proposed approaches, these location inference methods are developed on a fully geotagged dataset on which the attached Global Navigation Satellite System coordinates are used as ground truth data. Whilst a substantial number of location inference methods have been developed to date, questions arise pertaining the generalizability of the developed location inference models on a non-geotagged dataset. This paper proposes a high precision location inference method for inferring tweets' point of origin based on location mentions within the tweet text. We investigate the influence of data selection by comparing the model performance on two datasets. For the first dataset, we use a proportionate sample of tweet sources of a geotagged dataset. For the second dataset, we use a modelled distribution of tweet sources following a non-geotagged dataset. Our results showed that the distribution of tweet sources influences the performance of location inference models. Using the first dataset we outweighed state-of-the-art location extraction models by inferring 61.9%, 86.1% and 92.1% of the extracted locations within 1 km, 10 km and 50 km radius values, respectively. However, using the second dataset our precision values dropped to 45.3%, 73.1% and 81.0% for the same radius values.


Assuntos
Mapeamento Geográfico , Mídias Sociais , Humanos , Ferramenta de Busca
13.
PLoS One ; 18(3): e0283372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996089

RESUMO

This paper seeks to unveil how (geospatial) connection strategies associated with business innovation, differ between geolocated social media and hyperlink company networks. Thereby, we provide a first step towards understanding connection strategies of innovative companies on social media platforms. For this purpose, we build a hyperlink and Twitter follower network for 11,892 companies in the information technology (IT) sector and compare them along four dimensions. First, underlying network structures were assessed. Second, we asserted information flow patterns between companies with the help of centrality measures. Third, geographic and cognitive proximities of companies were compared. Fourth, the influence of company characteristics was examined through linear and logistic regression models. This comparison revealed, that on a general level the basic connection patterns of the hyperlink and Twitter network differ. Nevertheless, the geospatial dimension (geographic proximity) and the knowledge base of a company (cognitive proximity) appear to have a similar influence on the decision to connect with other companies on Twitter and via hyperlinks. Further, the results suggest that innovative companies most likely align their connection strategies across hyperlink and Twitter networks. Thus, business innovation might effect connection strategies across online company networks in a comparable manner.


Assuntos
Mídias Sociais , Humanos , Rede Social , Inquéritos e Questionários , Comércio , Ciência da Informação
14.
Sci Adv ; 9(3): eabq0199, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652520

RESUMO

Coronavirus disease 2019 (COVID-19) continues to affect the world, and the design of strategies to curb disease outbreaks requires close monitoring of their trajectories. We present machine learning methods that leverage internet-based digital traces to anticipate sharp increases in COVID-19 activity in U.S. counties. In a complementary direction to the efforts led by the Centers for Disease Control and Prevention (CDC), our models are designed to detect the time when an uptrend in COVID-19 activity will occur. Motivated by the need for finer spatial resolution epidemiological insights, we build upon previous efforts conceived at the state level. Our methods-tested in an out-of-sample manner, as events were unfolding, in 97 counties representative of multiple population sizes across the United States-frequently anticipated increases in COVID-19 activity 1 to 6 weeks before local outbreaks, defined when the effective reproduction number Rt becomes larger than 1 for a period of 2 weeks.

15.
Sensors (Basel) ; 12(7): 9800-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23012571

RESUMO

Ubiquitous geo-sensing enables context-aware analyses of physical and social phenomena, i.e., analyzing one phenomenon in the context of another. Although such context-aware analysis can potentially enable a more holistic understanding of spatio-temporal processes, it is rarely documented in the scientific literature yet. In this paper we analyzed the collective human behavior in the context of the weather. We therefore explored the complex relationships between these two spatio-temporal phenomena to provide novel insights into the dynamics of urban systems. Aggregated mobile phone data, which served as a proxy for collective human behavior, was linked with the weather data from climate stations in the case study area, the city of Udine, Northern Italy. To identify and characterize potential patterns within the weather-human relationships, we developed a hybrid approach which integrates several spatio-temporal statistical analysis methods. Thereby we show that explanatory factor analysis, when applied to a number of meteorological variables, can be used to differentiate between normal and adverse weather conditions. Further, we measured the strength of the relationship between the 'global' adverse weather conditions and the spatially explicit effective variations in user-generated mobile network traffic for three distinct periods using the Maximal Information Coefficient (MIC). The analyses result in three spatially referenced maps of MICs which reveal interesting insights into collective human dynamics in the context of weather, but also initiate several new scientific challenges.

16.
Comput Urban Sci ; 2(1): 19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783355

RESUMO

Urban morphology and human mobility are two sides of the complex mixture of elements that implicitly define urban functionality. By leveraging the emerging availability of crowdsourced data, we aim for novel insights on how they relate to each other, which remains a substantial scientific challenge. Specifically, our study focuses on extracting spatial-temporal information from taxi trips in an attempt on grouping urban space based on human mobility, and subsequently assess its potential relationship with urban functional characteristics in terms of local points-of-interest (POI) distribution. Proposing a vector representation of urban areas, constructed via unsupervised machine learning on trip data's temporal and geographic factors, the underlying idea is to define areas as "related" if they often act as destinations of similar departing regions at similar points in time, regardless of any other explicit information. Hidden relations are mapped within the generated vector space, whereby areas are represented as points and stronger/weaker relatedness is conveyed through relative distances. The mobility-related outcome is then compared with the POI-type distribution across the urban environment, to assess the functional consistency of mobility-based clusters of urban areas. Results indicate a meaningful relationship between spatial-temporal motion patterns and urban distributions of a diverse selection of POI-type categorizations, paving the way to ideally identify homogenous urban functional zones only based on the movement of people. Our data-driven approach is intended to complement traditional urban development studies on providing a novel perspective to urban activity modeling, standing out as a reference for mining information out of mobility and POI data types in the context of urban management and planning.

17.
Sci Total Environ ; 835: 155512, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489485

RESUMO

This study deals with the issue of greenwashing, i.e. the false portrayal of companies as environmentally friendly. The analysis focuses on the US metal industry, which is a major emission source of sulfur dioxide (SO2), one of the most harmful air pollutants. One way to monitor the distribution of atmospheric SO2 concentrations is through satellite data from the Sentinel-5P programme, which represents a major advance due to its unprecedented spatial resolution. In this paper, Sentinel-5P remote sensing data was combined with a plant-level firm database to investigate the relationship between the US metal industry and SO2 concentrations using a spatial regression analysis. Additionally, this study considered web text data, classifying companies based on their websites in order to depict their self-portrayal on the topic of sustainability. In doing so, we investigated the topic of greenwashing, i.e. whether or not a positive self-portrayal regarding sustainability is related to lower local SO2 concentrations. Our results indicated a general, positive correlation between the number of employees in the metal industry and local SO2 concentrations. The web-based analysis showed that only 8% of companies in the metal industry could be classified as engaged in sustainability based on their websites. The regression analyses indicated that these self-reported "sustainable" companies had a weaker effect on local SO2 concentrations compared to their "non-sustainable" counterparts, which we interpreted as an indication of the absence of general greenwashing in the US metal industry. However, the large share of firms without a website and lack of specificity of the text classification model were limitations to our methodology.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Mineração de Dados , Monitoramento Ambiental , Humanos , Indústrias , Metais/análise , Análise de Regressão , Dióxido de Enxofre/análise
18.
Int J Health Geogr ; 10: 67, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22188675

RESUMO

'Wikification of GIS by the masses' is a phrase-term first coined by Kamel Boulos in 2005, two years earlier than Goodchild's term 'Volunteered Geographic Information'. Six years later (2005-2011), OpenStreetMap and Google Earth (GE) are now full-fledged, crowdsourced 'Wikipedias of the Earth' par excellence, with millions of users contributing their own layers to GE, attaching photos, videos, notes and even 3-D (three dimensional) models to locations in GE. From using Twitter in participatory sensing and bicycle-mounted sensors in pervasive environmental sensing, to creating a 100,000-sensor geo-mashup using Semantic Web technology, to the 3-D visualisation of indoor and outdoor surveillance data in real-time and the development of next-generation, collaborative natural user interfaces that will power the spatially-enabled public health and emergency situation rooms of the future, where sensor data and citizen reports can be triaged and acted upon in real-time by distributed teams of professionals, this paper offers a comprehensive state-of-the-art review of the overlapping domains of the Sensor Web, citizen sensing and 'human-in-the-loop sensing' in the era of the Mobile and Social Web, and the roles these domains can play in environmental and public health surveillance and crisis/disaster informatics. We provide an in-depth review of the key issues and trends in these areas, the challenges faced when reasoning and making decisions with real-time crowdsourced data (such as issues of information overload, "noise", misinformation, bias and trust), the core technologies and Open Geospatial Consortium (OGC) standards involved (Sensor Web Enablement and Open GeoSMS), as well as a few outstanding project implementation examples from around the world.


Assuntos
Aglomeração , Saúde Ambiental/instrumentação , Internet/organização & administração , Vigilância da População/métodos , Saúde Pública/instrumentação , Algoritmos , Simulação por Computador , Sistemas Computacionais , Coleta de Dados/instrumentação , Coleta de Dados/métodos , Saúde Ambiental/métodos , Sistemas de Informação Geográfica/instrumentação , Saúde Global , Humanos , Imageamento Tridimensional , Internet/instrumentação , Conhecimento , Sistemas Homem-Máquina , Informática Médica , Saúde Pública/métodos , Mídias Sociais/instrumentação , Software , Reino Unido
19.
Nat Hazards (Dordr) ; 108(3): 2939-2969, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34789962

RESUMO

Up-to-date information about an emergency is crucial for effective disaster management. However, severe restrictions impede the creation of spatiotemporal information by current remote sensing-based monitoring systems, especially at the beginning of a disaster. Multiple publications have shown promising results in complementing monitoring systems through spatiotemporal information extracted from social media data. However, various monitoring system criteria, such as near-real-time capabilities or applicability for different disaster types and use cases, have not yet been addressed. This paper presents an improved version of a recently proposed methodology to identify disaster-impacted areas (hot spots and cold spots) by combining semantic and geospatial machine learning methods. The process of identifying impacted areas is automated using semi-supervised topic models for various kinds of natural disasters. We validated the portability of our approach through experiments with multiple natural disasters and disaster types with differing characteristics, whereby one use case served to prove the near-real-time capability of our approach. We demonstrated the validity of the produced information by comparing the results with official authority datasets provided by the United States Geological Survey and the National Hurricane Centre. The validation shows that our approach produces reliable results that match the official authority datasets. Furthermore, the analysis result values are shown and compared to the outputs of the remote sensing-based Copernicus Emergency Management Service. The information derived from different sources can thus be considered to reliably detect disaster-impacted areas that were not detected by the Copernicus Emergency Management Service, particularly in densely populated cities.

20.
Artigo em Inglês | MEDLINE | ID: mdl-33572674

RESUMO

Spatial crime analysis, together with perceived (crime) safety analysis have tremendously benefitted from Geographic Information Science (GISc) and the application of geospatial technology. This research study discusses a novel methodological approach to document the use of emerging geospatial technologies to explore perceived urban safety from the lenses of fear of crime or crime perception in the city of Baton Rouge, USA. The mixed techniques include a survey, spatial video geonarrative (SVG) in the field with study participants, and the extraction of moments of stress (MOS) from biosensing wristbands. This study enrolled 46 participants who completed geonarratives and MOS detection. A subset of 10 of these geonarratives are presented here. Each participant was driven in a car equipped with audio recording and spatial video along a predefined route while wearing the Empatica E4 wristbands to measure three physiological variables, all of them linked by timestamp. The results show differences in the participants' sentiments (positive or negative) and MOS in the field based on gender. These mixed-methods are encouraging for finding relationships between actual crime occurrences and the community perceived fear of crime in urban areas.


Assuntos
Crime , Cidades , Humanos , Louisiana , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA