Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203494

RESUMO

Ovarian cancer metastization is accompanied by the development of malignant ascites, which are associated with poor prognosis. The acellular fraction of this ascitic fluid contains tumor-promoting soluble factors, bioactive lipids, cytokines, and extracellular vesicles, all of which communicate with the tumor cells within this peritoneal fluid. Metabolomic profiling of ovarian cancer ascites has revealed significant differences in the pathways of fatty acids, cholesterol, glucose, and insulin. The proteins involved in these pathways promote tumor growth, resistance to chemotherapy, and immune evasion. Unveiling the key role of this liquid tumor microenvironment is crucial for discovering more efficient treatment options. This review focuses on the cholesterol and insulin pathways in ovarian cancer, identifying statins and metformin as viable treatment options when combined with standard chemotherapy. These findings are supported by clinical trials showing improved overall survival with these combinations. Additionally, statins and metformin are associated with the reversal of T-cell exhaustion, positioning these drugs as potential combinatory strategies to improve immunotherapy outcomes in ovarian cancer patients.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Metformina , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Metformina/uso terapêutico , Ascite , Neoplasias Ovarianas/tratamento farmacológico , Insulina , Imunoterapia , Colesterol , Microambiente Tumoral
2.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613537

RESUMO

The combination of Carboplatin with Paclitaxel is the mainstay treatment for high-grade serous carcinoma; however, many patients with advanced disease undergo relapse due to chemoresistance. Drug repurposing coupled with a combination of two or more compounds with independent mechanisms of action has the potential to increase the success rate of the antineoplastic treatment. The purpose of this study was to explore whether the combination of Carboplatin with repurposed drugs led to a therapeutic benefit. Hence, we assessed the cytotoxic effects of Carboplatin alone and in combination with several repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) in two tumoral models, i.e., Carboplatin (OVCAR8) and Carboplatin-Paclitaxel (OVCAR8 PTX R P) chemoresistant cell lines and in a non-tumoral (HOSE6.3) cell line. Cellular viability was measured using the Presto Blue assay, and the synergistic interactions were evaluated using the Chou-Talalay, Bliss Independence and Highest Single Agent reference models. Combining Carboplatin with Pitavastatin or Metformin displayed the highest cytotoxic effect and the strongest synergism among all combinations for OVCAR8 PTX R P cells, resulting in a chemotherapeutic effect superior to Carboplatin as a single agent. Concerning HOSE6.3 cells, combining Carboplatin with almost all the repurposed drugs demonstrated a safe pharmacological profile. Overall, we propose that Pitavastatin or Metformin could act synergistically in combination with Carboplatin for the management of high-grade serous carcinoma patients with a Carboplatin plus Paclitaxel resistance profile.


Assuntos
Antineoplásicos , Carcinoma , Metformina , Humanos , Carboplatina/uso terapêutico , Metformina/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Paclitaxel/farmacologia , Carcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
3.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162954

RESUMO

Mesothelin (MSLN) overexpression (OE) is a frequent finding in ovarian carcinomas and increases cell survival and tumor aggressiveness. Since cancer stem cells (CSCs) contribute to pathogenesis, chemoresistance and malignant behavior in ovarian cancer (OC), we hypothesized that MSLN expression could be creating a favorable environment that nurtures CSCs. In this study, we analyzed the expression of MSLN and CSC markers SOX2 and ALDH1 by immunohistochemistry (IHC) in different model systems: primary high-grade serous carcinomas (HGSCs) and OC cell lines, including cell lines that were genetically engineered for MSLN expression by either CRISPR-Cas9-mediated knockout (Δ) or lentivirus-mediated OE. Cell lines, wild type and genetically engineered, were evaluated in 2D and 3D culture conditions and xenografted in nude mice. We observed that MSLN was widely expressed in HGSC, and restricted expression was observed in OC cell lines. In contrast, SOX2 and ALDH1 expression was limited in all tissue and cell models. Most importantly, the expression of CSC markers was independent of MSLN expression, and manipulation of MSLN expression did not affect CSC markers. In conclusion, MSLN expression is not involved in driving the CSC phenotype.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Cistadenocarcinoma Seroso/patologia , Mesotelina/metabolismo , Neoplasias Ovarianas/patologia , Retinal Desidrogenase/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Estudos Retrospectivos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142615

RESUMO

Ovarian cancer (OC) has a specific type of metastasis, via transcoelomic, and most of the patients are diagnosed at advanced stages with multiple tumors spread within the peritoneal cavity. The role of Malignant Ascites (MA) is to serve as a transporter of tumor cells from the primary location to the peritoneal wall or to the surface of the peritoneal organs. MA comprise cellular components with tumor and non-tumor cells and acellular components, creating a unique microenvironment capable of modifying the tumor behavior. These microenvironment factors influence tumor cell proliferation, progression, chemoresistance, and immune evasion, suggesting that MA play an active role in OC progression. Tumor cells induce a complex immune suppression that neutralizes antitumor immunity, leading to disease progression and treatment failure, provoking a tumor-promoting environment. In this review, we will focus on the High-Grade Serous Carcinoma (HGSC) microenvironment with special attention to the tumor microenvironment immunology.


Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Ascite/patologia , Carcinoma Epitelial do Ovário , Feminino , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Microambiente Tumoral
5.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092251

RESUMO

The main challenge in ovarian cancer treatment is the management of recurrences. Facing this scenario, therapy selection is based on multiple factors to define the best treatment sequence. Target therapies, such as bevacizumab and polymerase (PARP) inhibitors, improved patient survival. However, despite their achievements, ovarian cancer survival remains poor; these therapeutic options are highly costly and can be associated with potential side effects. Recently, it has been shown that the combination of repurposed, conventional, chemotherapeutic drugs could be an alternative, presenting good patient outcomes with few side effects and low costs for healthcare institutions. The main aim of this review is to strengthen the importance of repurposed drugs as therapeutic alternatives, and to propose an in vitro model to assess the therapeutic value. Herein, we compiled the current knowledge on the most promising non-oncological drugs for ovarian cancer treatment, focusing on statins, metformin, bisphosphonates, ivermectin, itraconazole, and ritonavir. We discuss the primary drug use, anticancer mechanisms, and applicability in ovarian cancer. Finally, we propose the use of these therapies to perform drug efficacy tests in ovarian cancer ex vivo cultures. This personalized testing approach could be crucial to validate the existing evidences supporting the use of repurposed drugs for ovarian cancer treatment.


Assuntos
Reposicionamento de Medicamentos/métodos , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Ovarianas/tratamento farmacológico , Difosfonatos/uso terapêutico , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Itraconazol/uso terapêutico , Ivermectina/uso terapêutico , Metformina/uso terapêutico , Neoplasias Ovarianas/patologia , Ritonavir/uso terapêutico
6.
J Cell Sci ; 129(2): 354-66, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26604222

RESUMO

Embryo formation requires tight regulation and coordination of adhesion in multiple cell types. By undertaking imaging, three-dimensional (3D) reconstructions and genetic analysis during posterior midgut morphogenesis in Drosophila, we find a new requirement for the conserved fibroblast growth factor (FGF) signaling pathway in the maintenance of epithelial cell adhesion through FGF modulation of zygotic E-cadherin. During Drosophila gastrulation, primordial germ cells (PGCs) are transported with the posterior midgut while it undergoes dynamic cell shape changes. In embryos mutant for the FGF signaling pathway components Branchless and Breathless, zygotic E-cadherin is not targeted to adherens junctions, causing midgut pocket collapse, which impacts on PGC movement. We find that the ventral midline also requires FGF signaling to maintain cell-cell adhesion. We show that FGF signaling regulates the distribution of zygotic E-cadherin during early embryonic development to maintain cell-cell adhesion in the posterior midgut and the ventral midline, a role that is likely crucial in other tissues undergoing active cell shape changes with higher adhesive needs.


Assuntos
Caderinas/metabolismo , Movimento Celular , Proteínas de Drosophila/metabolismo , Fatores de Crescimento de Fibroblastos/fisiologia , Animais , Adesão Celular , Drosophila melanogaster , Feminino , Trato Gastrointestinal/metabolismo , Gônadas/citologia , Gônadas/embriologia , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Masculino , Transporte Proteico
7.
Int J Mol Sci ; 19(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011875

RESUMO

Optimal research results rely on the selection of cellular models capable of recapitulating the characteristics of primary tumours from which they originate. The expression of mucins (MUC16 and MUC1) and truncated O-glycans (Tn, STn and T) represents a characteristic footprint of serous ovarian carcinomas (SOCs). Therefore, selecting ovarian cancer (OVCA) cell lines that reflect this phenotype is crucial to explore the putative biological role of these biomarkers in the SOC setting. Here, we investigated a panel of OVCA cell lines commonly used as SOC models, and tested whether, when cultured in 2D and 3D conditions, these recapitulate the mucin and O-glycan expression profiles of SOCs. We further explored the role of truncating the O-glycosylation capacity in OVCAR3 cells through knockout of the COSMC chaperone, using in vitro and in vivo assays. We found that the majority of OVCA cell lines of serous origin do not share the mucin and truncated O-glycan footprint of SOCs, although 3D cultures showed a higher resemblance. We also found that genetic truncation of the O-glycosylation capacity of OVCAR3 cells did not enhance oncogenic features either in vitro or in vivo. This study underscores the importance of well-characterized cellular models to study specific features of ovarian cancer.


Assuntos
Antígeno Ca-125/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Proteínas de Membrana/metabolismo , Mucina-1/metabolismo , Neoplasias Ovarianas/metabolismo , Polissacarídeos/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígeno Ca-125/genética , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Feminino , Perfilação da Expressão Gênica , Glicosilação , Humanos , Proteínas de Membrana/genética , Camundongos Nus , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mucina-1/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fenótipo , Transplante Heterólogo
8.
Glycobiology ; 25(11): 1172-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26201951

RESUMO

The MUC16 mucin is overexpressed and aberrantly glycosylated in ovarian carcinomas. Immunodetection of circulating MUC16 is one of the most used cancer biomarker assays, but existing antibodies to MUC16 fail to distinguish normal and aberrant cancer glycoforms. Although all antibodies react with the tandem-repeat region, their epitopes appear to be conformational dependent and not definable by a short peptide. Aberrant glycoforms of MUC16 may constitute promising targets for diagnostic and immunotherapeutic intervention, and it is important to develop well-defined immunogens for induction of potent MUC16 immunity. Here, we developed a MUC16 vaccine based on a 1.7TR (264 aa) expressed in Escherichia coli and in vitro enzymatically glycosylated to generate the aberrant cancer-associated glycoform Tn. This vaccine elicited a potent serum IgG response in mice and we identified two major immunodominant linear peptide epitopes within the tandem repeat. We developed one monoclonal antibody, 5E11, reactive with a minimum epitope with the sequence FNTTER. This sequence contains potential N- and O-glycosylation sites and, interestingly, glycosylation blocked binding of 5E11. In immunochemistry of ovarian benign and cancer lesions, 5E11 showed similar reactivity as traditional MUC16 antibodies, suggesting that the epitope is not efficiently glycosylated. The study provides a vaccine design and immunodominant MUC16 TR epitopes.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Antígeno Ca-125/imunologia , Epitopos/imunologia , Proteínas de Membrana/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/química , Antígeno Ca-125/química , Células CHO , Cricetinae , Cricetulus , Epitopos/química , Feminino , Humanos , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular
9.
J Cell Sci ; 126(Pt 10): 2157-63, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23525000

RESUMO

Regulated cell shape changes in epithelial cells, which contribute to most organs and tissues, are at the basis of morphogenesis. Crumbs (Crb) is an essential apical determinant controlling epithelial apicobasal polarity. Here we provide evidence for a novel role of Crb apical localisation and stabilisation in controlling cell shape through apical domain organisation and adherens junction positioning. We find that Crb apical stabilisation requires the extracellular domain. In vivo results from Drosophila suggest that the extracellular domain assists Crb apical stabilisation by mediating Crb-Crb interactions at opposing cell membranes. We further confirm Crb-Crb extracellular interactions by showing that the extracellular domain of Crb is sufficient to promote cell aggregation in vitro. Furthermore, we report that Crb apical stabilisation mediated by the extracellular domain is also required for maintenance of Crb apicobasal polarity. Our results provide new insights into the mechanisms of apicobasal polarity and the cellular mechanisms of tissue architecture.


Assuntos
Junções Aderentes/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Células Epiteliais/fisiologia , Proteínas de Membrana/metabolismo , Morfogênese , Animais , Animais Geneticamente Modificados , Forma Celular/genética , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Proteínas de Membrana/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética
10.
Histopathology ; 66(3): 343-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25196071

RESUMO

AIMS: Intestinal metaplasia (IM), which results from de-novo expression of CDX2, and dysplasia are precursor lesions of gastric cancer that are associated with an increased risk for cancer development. There is much evidence suggesting a role for the transcription factor SOX2 in gastric differentiation. The aim of this study was to attempt to establish the relationship of SOX2 with CDX2 and with the differentiation reprogramming that characterizes gastric carcinogenesis, to assess their involvement in IM and dysplasia. METHODS AND RESULTS: Characterization of gastric (SOX2, MUC5AC, and MUC6) and intestinal (CDX2 and MUC2) markers in normal gastric mucosa, in 55 foci of IM and in 26 foci of dysplasia, was performed by immunohistochemistry. SOX2 was expressed in the normal gastric mucosa, in the presumptive stem cell compartment, and was maintained in 7% of the complete (MUC5AC-negative) and 85% of the incomplete (MUC5AC-positive) IM subtypes. Twelve per cent of the dysplastic lesions expressed SOX2, and the association with MUC5AC was lost. CDX2 was present in all IMs and dysplastic lesions. CONCLUSIONS: SOX2 is associated with gastric differentiation in incomplete IM and is lost in the progression to dysplasia, whereas CDX2 is acquired de novo in IM and maintained in dysplasia. This suggests that the balance between gastric and intestinal differentiation programmes impacts on the gastric carcinogenesis cascade progression.


Assuntos
Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/patologia , Lesões Pré-Cancerosas/patologia , Fatores de Transcrição SOXB1/metabolismo , Neoplasias Gástricas/patologia , Fator de Transcrição CDX2 , Diferenciação Celular/fisiologia , Humanos , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Metaplasia/metabolismo , Metaplasia/patologia , Lesões Pré-Cancerosas/metabolismo , Neoplasias Gástricas/metabolismo
11.
J Pathol ; 229(5): 705-18, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23180380

RESUMO

P-cadherin overexpression is associated with worse breast cancer survival, being a poor prognostic marker as well as a putative therapeutic target for the aggressive triple-negative and basal-like carcinomas (TNBCs). Previously, we have shown that P-cadherin promotes breast cancer invasion of cells where membrane E-cadherin was maintained; however, it suppresses invasion in models without endogenous cadherins, like melanomas. Here, we investigated if P-cadherin expression would interfere with the normal adhesion complex and which were the cellular/molecular consequences, constituting, in this way, a new mechanism by which E-cadherin invasive-suppressor function was disrupted. Using breast TNBC models, we demonstrated, for the first time, that P-cadherin co-localizes with E-cadherin, promoting cell invasion due to the disruption caused in the interaction between E-cadherin and cytoplasmic catenins. P-cadherin also induces cell migration and survival, modifying the expression profile of cells expressing wild-type E-cadherin and contributing to alter their cellular behaviour. Additionally, E- and P-cadherin co-expressing cells significantly enhanced in vivo tumour growth, compared with cells expressing only E- or only P-cadherin. Finally, we still found that co-expression of both molecules was significantly correlated with high-grade breast carcinomas, biologically aggressive, and with poor patient survival, being a strong prognostic factor in this disease. Our results show a role for E- and P-cadherin co-expression in breast cancer progression and highlight the potential benefit of targeting P-cadherin in the aggressive tumours expressing high levels of this protein.


Assuntos
Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Animais , Antígenos CD , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Gradação de Tumores , Invasividade Neoplásica , Prognóstico , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Carga Tumoral
12.
Cells ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534354

RESUMO

Chemoresistance is a challenge in cancer treatment, limiting the effectiveness of chemotherapy. Mushroom extracts have shown potential as treatments for cancer therapies, offering a possible solution to overcome chemoresistance. This systematic review aimed to explore the role of mushroom extracts in enhancing chemotherapy and reversing chemoresistance in cancer cells. We searched the PubMed, Web of Science and Scopus databases, following the PRISMA guidelines, and registered on PROSPERO. The extracts acted by inhibiting the proliferation of cancer cells, as well as enhancing the effect of chemotherapy. The mechanisms by which they acted included regulating anti-apoptotic proteins, inhibiting the JAK2/STAT3 pathway, inhibiting the ERK1/2 pathway, modulating microRNAs and regulating p-glycoprotein. These results highlight the potential of mushroom extracts to modulate multiple mechanisms in order to improve the efficacy of chemotherapy. This work sheds light on the use of mushroom extracts as an aid to chemotherapy to combat chemoresistance. Although studies are limited, the diversity of mushrooms and their bioactive compounds show promising results for innovative strategies to treat cancer more effectively. It is crucial to carry out further studies to better understand the therapeutic potential of mushroom extracts to improve the efficacy of chemotherapy in cancer cells.


Assuntos
Agaricales , MicroRNAs , Neoplasias , Neoplasias/tratamento farmacológico , MicroRNAs/uso terapêutico , Sistema de Sinalização das MAP Quinases
13.
Cells ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38727322

RESUMO

Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
14.
Biochem Biophys Rep ; 39: 101755, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38974022

RESUMO

Ovarian cancer (OC) patients develop ascites, an accumulation of ascitic fluid in the peritoneal cavity anda sign of tumour dissemination within the peritoneal cavity. This body fluid is under-researched, mainly regarding the ascites formed during tumour progression that have no diagnostic value and, therefore, are discarded. We performed a discovery proteomics study to identify new biomarkers in the ascites supernatant of OC patients. In this preliminary study, we analyzed a small amount of OC ascites to highlight the importance of not discarding such biological material during treatment, which could be valuable for OC management. Our findings reveal that OC malignant ascitic fluid (MAF) displays a proliferative environment that promotes the growth of OC cells that shift the metabolic pathway using alternative sources of nutrients, such as the cholesterol pathway. Also, OC ascites drained from patients during treatment showed an immunosuppressive environment, with up-regulation of proteins from the signaling pathways of IL-4 and IL-13 and down-regulation from the MHC-II. This preliminary study pinpointed a new protein (Transmembrane Protein 132A) in the OC context that deserves to be better explored in a more extensive cohort of patients' samples. The proteomic profile of MAF from OC patients provides a unique insight into the metabolic kinetics of cancer cells during disease progression, and this information can be used to develop more effective treatment strategies.

15.
Stem Cells ; 30(5): 854-64, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389315

RESUMO

Although the luminal progenitor cell of the normal mammary gland hierarchy has been proposed as the cell-of-origin for basal-like breast cancers, finding the cancer stem cell (CSC) phenotype for this malignancy has proven a difficult task, mostly due to the lack of specific markers. Recently, basal-like sporadic and familial cases of breast cancer have been linked to BRCA1 gene inactivation, which enables the upregulation of the target-repressed CDH3/P-cadherin gene, an important biomarker of basal-like breast carcinomas. Previously, we demonstrated that P-cadherin overexpression can mediate aggressive behavior in these tumors. Thus, our aim was to test whether P-cadherin mediates stem cell properties in basal-like breast carcinomas. Using a series of breast cancer cell lines and primary tumors, we showed that P-cadherin was directly associated with the expression of the breast stem markers CD44, CD49f, and aldehyde dehydrogenase 1 in the basal subtype. Moreover, cell population enriched for P-cadherin expression comprised increased in vitro mammosphere-forming efficiency and capacity to grow colonies in three-dimensional cultures as well as greater tumorigenicity. Importantly, an association was found with stem-/progenitor-like phenotypes of the breast, including the luminal progenitor population, CD49f(+) CD24(+). Additionally, P-cadherin expression conferred resistance to x-ray-induced cell death, sustaining a role for this molecule in another stem cell property. In summary, we demonstrated, for the first time, that P-cadherin mediates stem cell properties, which could be explored in order to better define the CSC phenotype of basal-like breast tumors and the cell-of-origin of this malignancy.


Assuntos
Neoplasias da Mama/metabolismo , Caderinas/biossíntese , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/biossíntese , Integrina alfa6/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasia de Células Basais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Família Aldeído Desidrogenase 1 , Neoplasias da Mama/patologia , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Feminino , Humanos , Isoenzimas/biossíntese , Neoplasia de Células Basais/patologia , Células-Tronco Neoplásicas/patologia , Retinal Desidrogenase/biossíntese , Raios X
16.
Biomolecules ; 12(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36291699

RESUMO

Drug combination and drug repurposing are two strategies that allow to find novel oncological therapies, in a faster and more economical process. In our previous studies, we developed a novel model of drug combination using antineoplastic and different repurposed drugs. We demonstrated the combinations of doxorubicin (DOX) + artesunate, DOX + chloroquine, paclitaxel (PTX) + fluoxetine, PTX + fluphenazine, and PTX + benztropine induce significant cytotoxicity in Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. Furthermore, it was found that 5-FU + thioridazine and 5-fluorouracil (5-FU) + sertraline can synergistically induce a reduction in the viability of human colorectal adenocarcinoma cell line (HT-29). In this study, we aim to (1) evaluate the biosafety profile of these drug combinations for non-tumoral cells and (2) determine their mechanism of action in cancer cells. To do so, human fetal lung fibroblast cells (MRC-5) fibroblast cells were incubated for 48 h with all drugs, alone and in combination in concentrations of 0.25, 0.5, 1, 2, and 4 times their half-maximal inhibitory concentration (IC50). Cell morphology and viability were evaluated. Next, we designed and constructed a cell microarray to perform immunohistochemistry studies for the evaluation of palmitoyl-protein thioesterase 1 (PPT1), Ki67, cleaved-poly (ADP-ribose) polymerase (cleaved-PARP), multidrug resistance-associated protein 2 (MRP2), P-glycoprotein (P-gp), and nuclear factor-kappa-B (NF-kB) p65 expression. We demonstrate that these combinations are cytotoxic for cancer cells and safe for non-tumoral cells at lower concentrations. Furthermore, it is also demonstrated that PPT1 may have an important role in the mechanism of action of these combinations, as demonstrated by their ability to decrease PPT1 expression. These results support the use of antimalarial and central nervous system (CNS) drugs in combination regimens with chemotherapeutic agents; nevertheless, additional studies are recommended to further explore their complete mechanisms of action.


Assuntos
Antimaláricos , Antineoplásicos , Neoplasias da Mama , Neoplasias do Colo , Humanos , Feminino , Células MCF-7 , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antígeno Ki-67/metabolismo , Contenção de Riscos Biológicos , Tioridazina/farmacologia , Tioridazina/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , NF-kappa B/metabolismo , Flufenazina/farmacologia , Flufenazina/uso terapêutico , Benzotropina/farmacologia , Benzotropina/uso terapêutico , Sertralina/farmacologia , Sertralina/uso terapêutico , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Michigan , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ribose/farmacologia , Ribose/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Paclitaxel/farmacologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Cloroquina/farmacologia , Difosfato de Adenosina , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
17.
Cancers (Basel) ; 14(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139522

RESUMO

Chemotherapy is a hallmark in high-grade serous carcinoma management; however, chemoresistance and side effects lead to therapeutic interruption. Combining repurposed drugs with chemotherapy has the potential to improve antineoplastic efficacy, since drugs can have independent mechanisms of action and suppress different pathways simultaneously. This study aimed to explore whether the combination of Paclitaxel with repurposed drugs led to a therapeutic benefit. Thus, we evaluated the cytotoxic effects of Paclitaxel alone and in combination with several repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) in two tumor chemoresistant (OVCAR8 and OVCAR8 PTX R P) and a non-tumoral (HOSE6.3) cell lines. Cellular viability was assessed using Presto Blue assay, and the synergistic interactions were evaluated using Chou-Talalay, Bliss Independence and Highest Single Agent reference models. The combination of Paclitaxel with Pitavastatin or Ivermectin showed the highest cytotoxic effect and the strongest synergism among all combinations for both chemoresistant cell lines, resulting in a chemotherapeutic effect superior to both drugs alone. Almost all the repurposed drugs in combination with Paclitaxel presented a safe pharmacological profile in non-tumoral cells. Overall, we suggest that Pitavastatin and Ivermectin could act synergistically in combination with Paclitaxel, being promising two-drug combinations for high-grade serous carcinoma management.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36167722

RESUMO

OBJECTIVES: The objective of this study was to evaluate the expression of several cell membrane markers in oral squamous cell carcinomas (OSCC) and to examine their prognostic influence. STUDY DESIGN: We analyzed the immunohistochemical expression of claudin-1 (CLDN-1), claudin-4 (CLDN-4), claudin-5 (CLDN-5), claudin-7 (CLDN-7), occludin (OCLN), and E-cadherin (CDHE) in 60 patients with OSCC treated in a central hospital Center of Oporto. The prognostic significance of these biomarkers in cancer-specific survival and recurrence-free survival were evaluated using multivariate analysis. RESULTS: Claudin-1 was observed in the membrane of tumor cells in 51 cases (89.5%), CLDN-4 in 36 cases (63.2%), and CLDN-7 in 48 cases (80%). Claudin-5 was detected in the cytoplasm of tumor cells in 46 cases (78%) and OCLN in 40 cases (70.2%). In a multivariate analysis, the combined evaluation of OCLN and CLDN-1 revealed a significant and independent association with cancer-specific survival and recurrence-free survival. We found a low extent score for OCLN and a high intensity score for CLDN-1, presenting the hazard ratios of 15.48 (P = .014) and 9.446 (P = .012), respectively. CONCLUSION: The CLDN-1 and OCLN proteins could be involved in tumor progression of OSCC. Their combined deregulated expression showed an adverse effect on survival and therefore they could be regarded as important prognostic biomarkers in OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Claudina-1 , Ocludina , Claudina-5 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Prognóstico , Carcinoma de Células Escamosas/patologia
20.
Pathogens ; 11(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35335638

RESUMO

The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics. Here, we propose a histology-based method to evaluate infection kinetics grounded in cell microarray (CMA) construction, immunocytochemistry and in situ hybridization techniques. We demonstrate that the chip-like organization of the InfectionCMA has several advantages, allowing side-by-side comparisons between diverse cell lines, infection time points, and biomarker expression and cytolocalization evaluation in the same slide. In addition, this methodology has the potential to be easily adapted for drug screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA