Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Oncogene ; 42(35): 2629-2640, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500798

RESUMO

Preventing or effectively treating metastatic uveal melanoma (UM) is critical because it occurs in about half of patients and confers a very poor prognosis. There is emerging evidence that hepatocyte growth factor (HGF) and insulin-like growth factor 1 (IGF-1) promote metastasis and contribute to the striking metastatic hepatotropism observed in UM metastasis. However, the molecular mechanisms by which HGF and IGF-1 promote UM liver metastasis have not been elucidated. ASAP1, which acts as an effector for the small GTPase ARF6, is highly expressed in the subset of uveal melanomas most likely to metastasize. Here, we found that HGF and IGF-1 hyperactivate ARF6, leading to its interaction with ASAP1, which then acts as an effector to induce nuclear localization and transcriptional activity of NFAT1. Inhibition of any component of this pathway impairs cellular invasiveness. Additionally, knocking down ASAP1 or inhibiting NFAT signaling reduces metastasis in a xenograft mouse model of UM. The discovery of this signaling pathway represents not only an advancement in our understanding of the biology of uveal melanoma metastasis but also identifies a novel pathway that could be targeted to treat or prevent metastatic uveal melanoma.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Animais , Camundongos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Melanoma/patologia , Neoplasias Uveais/metabolismo , Modelos Animais de Doenças , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Pigment Cell Melanoma Res ; 33(2): 264-278, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31880399

RESUMO

Uveal melanoma is the most common primary malignancy of the eye, and a number of discoveries in the last decade have led to a more thorough molecular characterization of this cancer. However, the prognosis remains dismal for patients with metastases, and there is an urgent need to identify treatments that are effective for this stage of disease. Animal models are important tools for preclinical studies of uveal melanoma. A variety of models exist, and they have specific advantages, disadvantages, and applications. In this review article, these differences are explored in detail, and ideas for new models that might overcome current challenges are proposed.


Assuntos
Modelos Animais de Doenças , Melanoma/patologia , Neoplasias Uveais/patologia , Animais , Linhagem Celular Tumoral , Engenharia Genética , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Clin Cancer Res ; 26(23): 6374-6386, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32933997

RESUMO

PURPOSE: Mutational activation of GNAQ or GNA11 (GNAQ/11), detected in >90% of uveal melanomas, leads to constitutive activation of oncogenic pathways, including MAPK and YAP. To date, chemo- or pathway-targeted therapies, either alone or in combination, have proven ineffective in the treatment of patients with metastatic uveal melanoma. EXPERIMENTAL DESIGN: We tested the efficacy of chloroquine or hydroxychloroquine, in combination with MAPK pathway inhibition in GNAQ/11-mutated cells in vitro and in vivo and identified mechanisms of MEK1/2 inhibitor plus chloroquine-induced cytotoxicity. RESULTS: Inhibition of GNAQ/11-mediated activation of MAPK signaling resulted in the induction of autophagy. Combined inhibition of Gα and autophagy or lysosome function resulted in enhanced cell death. Moreover, the combination of MEK1/2 inhibition, using trametinib, with the lysosome inhibitor, chloroquine, also increased cytotoxicity. Treatment of mice bearing GNAQ/11-driven melanomas with trametinib plus hydroxychloroquine resulted in inhibition of tumor growth and significantly prolonged survival. Interestingly, lysosomal- and autophagy-specific inhibition with bafilomycin A1 was not sufficient to promote cytotoxicity in combination with trametinib. However, the addition of YAP inhibition with trametinib plus bafilomycin A1 resulted in cell death at comparable levels to trametinib plus chloroquine (T/CQ) treatment. Furthermore, T/CQ-treated cells displayed decreased YAP nuclear localization and decreased YAP transcriptional activity. Expression of a constitutively active YAP5SA mutant conferred resistance to T/CQ-induced cell death. CONCLUSIONS: These results suggest that YAP, MEK1/2, and lysosome function are necessary and critical targets for the therapy of GNAQ/11-driven melanoma, and identify trametinib plus hydroxychloroquine as a potential treatment strategy for metastatic uveal melanoma.


Assuntos
Cloroquina/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Melanoma/tratamento farmacológico , Mutação , Piridonas/farmacologia , Pirimidinonas/farmacologia , Neoplasias Uveais/tratamento farmacológico , Animais , Antimaláricos/farmacologia , Apoptose , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Inibidores de Proteínas Quinases/farmacologia , Células Tumorais Cultivadas , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int Immunopharmacol ; 66: 154-161, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30453149

RESUMO

Most cases of cervical cancer are the result of infection with specific high-risk types of human papillomavirus (HPV). Investigating the genetic basis of the host immune response, particularly cytokine function, could help further characterize the progression of cervical HPV infection into neoplasia. Prior studies have demonstrated a correlation between genetic variants of tumor necrosis factor alpha (TNF-α, TNF gene) and/or interleukin-10 (IL-10, IL10 gene) and cervical cancer susceptibility. However, some of the results have been contradictory. We sought to resolve these discrepancies by carrying out our study in a large cohort of Chinese women. In order to assess the association of TNF and IL10 genotypes with cervical cancer susceptibility, the polymorphisms in TNF (-238 G/A, -308 G/A) and IL10 (-592 C/A, -819 C/T, -1082 A/G) were genotyped and odds ratios for the genotype and allele frequencies between cervical cancer patients and healthy controls were calculated. Also, the functional relevance of these polymorphisms was evaluated using enzyme-linked immunosorbent assays (ELISAs) and in vitro lymphocyte proliferation assays. The TNF-238 AA genotype frequency was lower in patients than in controls (p < 0.05). TNF-308 AA, IL10-592 CA/AA, and IL10-819 CC/CT genotype frequencies were higher in cervical cancer patients than in controls (p < 0.05). The frequency of the TNF-238 A allele was significantly lower in patients, while the frequency of the -308 A allele was significantly higher (p < 0.05). No significant differences between patients and controls were found in the genotype or allele frequencies of IL10-1082 A/G (p > 0.05). Furthermore, the combinations of TNF-238 GA or GG and IL10-592 CC; TNF-238 GA or GG and IL10-592 CA or AA; TNF-308 AA and IL10-592 CC; and TNF-308 AA and IL10-592 CA or AA in cervical cancer patients were statistically significant (p < 0.0167). Upon stimulation with PHA, peripheral blood mononuclear cells (PBMCs) with the TNF-308AA genotype exhibited significantly higher proliferation rates, elevated IL-4, TGF-ß levels, and lower IL-2 levels (p < 0.05). For IL10-592C/A, the AA and CA genotypes were significantly associated with higher proliferation rates, elevated IL-4 and IL-10 levels (p < 0.05). We also found that for TNF-308 G/A or IL10-592 C/A variants, the combination of TNF-308 GG or GA with IL10 CA or AA had an association with the severity of cervical cancer. Taken together, these results suggest that TNF-308 AA and IL10-592 CA/AA genotypes may increase susceptibility to cervical cancer by altering the immune response of an individual.


Assuntos
Genótipo , Interleucina-10/genética , Linfócitos/imunologia , Fator de Necrose Tumoral alfa/genética , Neoplasias do Colo do Útero/genética , Adulto , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , China , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Ativação Linfocitária , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
5.
Small GTPases ; 10(1): 1-12, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-28001501

RESUMO

The activation of the small GTPase ARF6 has been implicated in promoting several pathological processes related to vascular instability and tumor formation, growth, and metastasis. ARF6 also plays a vital role during embryonic development. Recent studies have suggested that ARF6 carries out these disparate functions primarily by controlling protein trafficking within the cell. ARF6 helps direct proteins to intracellular or extracellular locations where they function in normal cellular responses during development and in pathological processes later in life. This transport of proteins is accomplished through a variety of mechanisms, including endocytosis and recycling, microvesicle release, and as yet uncharacterized processes. This Commentary will explore the functions of ARF6, while focusing on the role of this small GTPase in development and postnatal physiology, regulating barrier function and diseases associated with its loss, and tumor formation, growth, and metastasis.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Fator 6 de Ribosilação do ADP , Animais , Desenvolvimento Embrionário , Endotélio Vascular/fisiologia , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Transporte Proteico
7.
J Clin Invest ; 127(12): 4569-4582, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29058688

RESUMO

The devastating sequelae of diabetes mellitus include microvascular permeability, which results in retinopathy. Despite clinical and scientific advances, there remains a need for new approaches to treat retinopathy. Here, we have presented a possible treatment strategy, whereby targeting the small GTPase ARF6 alters VEGFR2 trafficking and reverses signs of pathology in 4 animal models that represent features of diabetic retinopathy and in a fifth model of ocular pathological angiogenesis. Specifically, we determined that the same signaling pathway utilizes distinct GEFs to sequentially activate ARF6, and these GEFs exert distinct but complementary effects on VEGFR2 trafficking and signal transduction. ARF6 activation was independently regulated by 2 different ARF GEFs - ARNO and GEP100. Interaction between VEGFR2 and ARNO activated ARF6 and stimulated VEGFR2 internalization, whereas a VEGFR2 interaction with GEP100 activated ARF6 to promote VEGFR2 recycling via coreceptor binding. Intervening in either pathway inhibited VEGFR2 signal output. Finally, using a combination of in vitro, cellular, genetic, and pharmacologic techniques, we demonstrated that ARF6 is pivotal in VEGFR2 trafficking and that targeting ARF6-mediated VEGFR2 trafficking has potential as a therapeutic approach for retinal vascular diseases such as diabetic retinopathy.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Retinopatia Diabética/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Linhagem Celular , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Transporte Proteico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
8.
Cancer Cell ; 29(6): 889-904, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27265506

RESUMO

Activating mutations in Gαq proteins, which form the α subunit of certain heterotrimeric G proteins, drive uveal melanoma oncogenesis by triggering multiple downstream signaling pathways, including PLC/PKC, Rho/Rac, and YAP. Here we show that the small GTPase ARF6 acts as a proximal node of oncogenic Gαq signaling to induce all of these downstream pathways as well as ß-catenin signaling. ARF6 activates these diverse pathways through a common mechanism: the trafficking of GNAQ and ß-catenin from the plasma membrane to cytoplasmic vesicles and the nucleus, respectively. Blocking ARF6 with a small-molecule inhibitor reduces uveal melanoma cell proliferation and tumorigenesis in a mouse model, confirming the functional relevance of this pathway and suggesting a therapeutic strategy for Gα-mediated diseases.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Melanoma/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Neoplasias Uveais/tratamento farmacológico , beta Catenina/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/antagonistas & inibidores , Fatores de Ribosilação do ADP/genética , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Citoplasma/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Camundongos , Transplante de Neoplasias , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA