RESUMO
BACKGROUND: Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE: We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS: Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS: Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper ). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION: This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Assuntos
Compostos Benzidrílicos , Monitoramento Biológico , Exposição Ambiental , Fenóis , Humanos , Compostos Benzidrílicos/urina , Compostos Benzidrílicos/análise , Feminino , Fenóis/urina , Fenóis/análise , Monitoramento Biológico/métodos , Adulto , Pessoa de Meia-Idade , Europa (Continente) , Idoso , Adulto Jovem , Adolescente , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/urina , Poluentes Ambientais/análise , Disruptores Endócrinos/urina , Disruptores Endócrinos/análiseRESUMO
BACKGROUND: Phthalates are ubiquitous in the environment. Despite short half-lives, chronic exposure can lead to endocrine disruption. The safety of phthalate substitute DINCH is unclear. OBJECTIVE: To evaluate associations between urinary concentrations of phthalate/DINCH metabolites and body mass index (BMI) z-score among children and adolescents. METHOD: We used Human Biomonitoring for Europe Aligned Studies data from 2876 children (12 studies, 6-12 years, 2014-2021) and 2499 adolescents (10 studies, 12-18 years, 2014-2021) with up to 14 phthalate/DINCH urinary metabolites. We used multilevel linear regression to assess associations between phthalate/DINCH concentrations and BMI z-scores, testing effect modification by sex. In a subset, Bayesian kernel machine regression (BKMR) and quantile-based g-computation assessed important predictors and mixture effects. RESULTS: In children, we found few associations in single pollutant models and no interactions by sex (p-interaction > 0.1). BKMR detected no relevant exposures (posterior inclusion probabilities, PIPs < 0.25), nor joint mixture effect. In adolescent single pollutant analysis, mono-ethyl phthalate (MEP) concentrations were associated with higher BMI z-score in males (ß = 0.08, 95 % CI: 0.001,0.15, per interquartile range increase in ln-transformed concentrations, p-interaction = 0.06). Conversely, mono-isobutyl phthalate (MiBP) was associated with a lower BMI z-score in both sexes (ß = -0.13, 95 % CI: -0.19, -0.07, p-interaction = 0.74), as was sum of di(2-ethylhexyl) phthalate (∑DEHP) metabolites in females only (ß = -0.08, 95 % CI: -0.14, -0.02, p-interaction = 0.01). In BKMR, higher BMI z-scores were predicted by MEP (PIP=0.90) and MBzP (PIP=0.84) in males. Lower BMI z-scores were predicted by MiBP (PIP=0.999), OH-MIDP (PIP=0.88) and OH-MINCH (PIP=0.72) in both sexes, less robustly by DEHP (PIP=0.61) in females. In quantile g-computation, the overall mixture effect was null for males, and trended negative for females (ß = -0.11, 95 % CI: -0.25, 0.03, per joint exposure quantile). CONCLUSION: In this large Europe-wide study, we found age/sex-specific differences between phthalate metabolites and BMI z-score, stronger in adolescents. Longitudinal studies with repeated phthalate measurements are needed.
Assuntos
Índice de Massa Corporal , Exposição Ambiental , Poluentes Ambientais , Ácidos Ftálicos , Humanos , Ácidos Ftálicos/urina , Adolescente , Criança , Europa (Continente) , Estudos Transversais , Masculino , Feminino , Poluentes Ambientais/urina , Poluentes Ambientais/metabolismo , Exposição Ambiental/análise , Monitoramento BiológicoRESUMO
The European Joint Programme HBM4EU coordinated and advanced human biomonitoring (HBM) in Europe in order to provide science-based evidence for chemical policy development and improve chemical management. Arsenic (As) was selected as a priority substance under the HBM4EU initiative for which open, policy relevant questions like the status of exposure had to be answered. Internal exposure to inorganic arsenic (iAs), measured as Toxic Relevant Arsenic (TRA) (the sum of As(III), As(V), MMA, DMA) in urine samples of teenagers differed among the sampling sites (BEA (Spain) > Riksmaten adolescents (Sweden), ESTEBAN (France) > FLEHS IV (Belgium), SLO CRP (Slovenia)) with geometric means between 3.84 and 8.47 µg/L. The ratio TRA to TRA + arsenobetaine or the ratio TRA to total arsenic varied between 0.22 and 0.49. Main exposure determinants for TRA were the consumption of rice and seafood. When all studies were combined, Pearson correlation analysis showed significant associations between all considered As species. Higher concentrations of DMA, quantitatively a major constituent of TRA, were found with increasing arsenobetaine concentrations, a marker for organic As intake, e.g. through seafood, indicating that other sources of DMA than metabolism of inorganic As exist, e.g. direct intake of DMA or via the intake of arsenosugars or -lipids. Given the lower toxicity of DMA(V) versus iAs, estimating the amount of DMA not originating from iAs, or normalizing TRA for arsenobetaine intake could be useful for estimating iAs exposure and risk. Comparing urinary TRA concentrations with formerly derived biomonitoring equivalent (BE) for non-carcinogenic effects (6.4 µg/L) clearly shows that all 95th percentile exposure values in the different studies exceeded this BE. This together with the fact that cancer risk may not be excluded even at lower iAs levels, suggests a possible health concern for the general population of Europe.
Assuntos
Arsênio , Arsenicais , Adolescente , Humanos , Arsênio/análise , Arsenicais/urina , Europa (Continente) , França , Exposição Ambiental/análiseRESUMO
Per- and polyfluoroalkyl substances (PFAS) are widespread pollutants that may impact youth adiposity patterns. We investigated cross-sectional associations between PFAS and body mass index (BMI) in teenagers/adolescents across nine European countries within the Human Biomonitoring for Europe (HBM4EU) initiative. We used data from 1957 teenagers (12-18 yrs) that were part of the HBM4EU aligned studies, consisting of nine HBM studies (NEBII, Norway; Riksmaten Adolescents 2016-17, Sweden; PCB cohort (follow-up), Slovakia; SLO CRP, Slovenia; CROME, Greece; BEA, Spain; ESTEBAN, France; FLEHS IV, Belgium; GerES V-sub, Germany). Twelve PFAS were measured in blood, whilst weight and height were measured by field nurse/physician or self-reported in questionnaires. We assessed associations between PFAS and age- and sex-adjusted BMI z-scores using linear and logistic regression adjusted for potential confounders. Random-effects meta-analysis and mixed effects models were used to pool studies. We assessed mixture effects using molar sums of exposure biomarkers with toxicological/structural similarities and quantile g-computation. In all studies, the highest concentrations of PFAS were PFOS (medians ranging from 1.34 to 2.79 µg/L). There was a tendency for negative associations with BMI z-scores for all PFAS (except for PFHxS and PFHpS), which was borderline significant for the molar sum of [PFOA and PFNA] and significant for single PFOA [ß-coefficient (95% CI) per interquartile range fold change = -0.06 (-0.17, 0.00) and -0.08 (-0.15, -0.01), respectively]. Mixture assessment indicated similar negative associations of the total mixture of [PFOA, PFNA, PFHxS and PFOS] with BMI z-score, but not all compounds showed associations in the same direction: whilst [PFOA, PFNA and PFOS] were negatively associated, [PFHxS] associated positively with BMI z-score. Our results indicated a tendency for associations of relatively low PFAS concentrations with lower BMI in European teenagers. More prospective research is needed to investigate this potential relationship and its implications for health later in life.
Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Adolescente , Humanos , Fluorocarbonos/análise , Índice de Massa Corporal , Estudos Transversais , Estudos Prospectivos , Poluentes Ambientais/análiseRESUMO
Many legacy and emerging flame retardants (FRs) have adverse human and environmental health effects. This study reports legacy and emerging FRs in children from nine European countries from the HBM4EU aligned studies. Studies from Belgium, Czech Republic, Germany, Denmark, France, Greece, Slovenia, Slovakia, and Norway conducted between 2014 and 2021 provided data on FRs in blood and urine from 2136 children. All samples were collected and analyzed in alignment with the HBM4EU protocols. Ten halogenated FRs were quantified in blood, and four organophosphate flame retardants (OPFR) metabolites quantified in urine. Hexabromocyclododecane (HBCDD) and decabromodiphenyl ethane (DBDPE) were infrequently detected (<16% of samples). BDE-47 was quantified in blood from Greece, France, and Norway, with France (0.36 ng/g lipid) having the highest concentrations. BDE-153 and -209 were detected in <40% of samples. Dechlorane Plus (DP) was quantified in blood from four countries, with notably high median concentrations of 16 ng/g lipid in Slovenian children. OPFR metabolites had a higher detection frequency than other halogenated FRs. Diphenyl phosphate (DPHP) was quantified in 99% of samples across 8 countries at levels â¼5 times higher than other OPFR metabolites (highest median in Slovenia of 2.43 ng/g lipid). FR concentrations were associated with lifestyle factors such as cleaning frequency, employment status of the father of the household, and renovation status of the house, among others. The concentrations of BDE-47 in children from this study were similar to or lower than FRs found in adult matrices in previous studies, suggesting lower recent exposure and effectiveness of PBDE restrictions.
Assuntos
Retardadores de Chama , Adulto , Criança , Humanos , Éteres Difenil Halogenados , Europa (Continente) , LipídeosRESUMO
Little is known about exposure determinants of acrylamide (AA), a genotoxic food-processing contaminant, in Europe. We assessed determinants of AA exposure, measured by urinary mercapturic acids of AA (AAMA) and glycidamide (GAMA), its main metabolite, in 3157 children/adolescents and 1297 adults in the European Human Biomonitoring Initiative. Harmonized individual-level questionnaires data and quality assured measurements of AAMA and GAMA (urine collection: 2014-2021), the short-term validated biomarkers of AA exposure, were obtained from four studies (Italy, France, Germany, and Norway) in children/adolescents (age range: 3-18 years) and six studies (Portugal, Spain, France, Germany, Luxembourg, and Iceland) in adults (age range: 20-45 years). Multivariable-adjusted pooled quantile regressions were employed to assess median differences (ß coefficients) with 95% confidence intervals (95% CI) in AAMA and GAMA (µg/g creatinine) in relation to exposure determinants. Southern European studies had higher AAMA than Northern studies. In children/adolescents, we observed significant lower AA associated with high socioeconomic status (AAMA:ß = - 9.1 µg/g creatinine, 95% CI - 15.8, - 2.4; GAMA: ß = - 3.4 µg/g creatinine, 95% CI - 4.7, - 2.2), living in rural areas (AAMA:ß = - 4.7 µg/g creatinine, 95% CI - 8.6, - 0.8; GAMA:ß = - 1.1 µg/g creatinine, 95% CI - 1.9, - 0.4) and increasing age (AAMA:ß = - 1.9 µg/g creatinine, 95% CI - 2.4, - 1.4; GAMA:ß = - 0.7 µg/g creatinine, 95% CI - 0.8, - 0.6). In adults, higher AAMA was also associated with high consumption of fried potatoes whereas lower AAMA was associated with higher body-mass-index. Based on this large-scale study, several potential determinants of AA exposure were identified in children/adolescents and adults in European countries.
Assuntos
Acrilamida , Monitoramento Biológico , Adolescente , Humanos , Adulto , Criança , Pré-Escolar , Adulto Jovem , Pessoa de Meia-Idade , Acrilamida/toxicidade , Creatinina , Biomarcadores , Inquéritos e QuestionáriosRESUMO
Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined.
Assuntos
Ácidos Ftálicos , Masculino , Criança , Feminino , Adolescente , Humanos , Políticas , Monitoramento Biológico , Ácidos CarboxílicosRESUMO
Phthalates are mainly used as plasticizers for polyvinyl chloride (PVC). Exposure to several phthalates is associated with different adverse effects most prominently on the development of reproductive functions. The HBM4EU Aligned Studies (2014-2021) have investigated current European exposure to ten phthalates (DEP, BBzP, DiBP, DnBP, DCHP, DnPeP, DEHP, DiNP, DiDP, DnOP) and the substitute DINCH to answer the open policy relevant questions which were defined by HBM4EU partner countries and EU institutions as the starting point of the programme. The exposure dataset includes â¼5,600 children (6-11 years) and adolescents (12-18 years) from up to 12 countries per age group and covering the North, East, South and West European regions. Study data from participating studies were harmonised with respect to sample size and selection of participants, selection of biomarkers, and quality and comparability of analytical results to provide a comparable perspective of European exposure. Phthalate and DINCH exposure were deduced from urinary excretions of metabolites, where concentrations were expressed as their key descriptor geometric mean (GM) and 95th percentile (P95). This study aims at reporting current exposure levels and differences in these between European studies and regions, as well as comparisons to human biomonitoring guidance values (HBM-GVs). GMs for children were highest for ∑DEHP metabolites (33.6 µg/L), MiBP (26.6 µg/L), and MEP (24.4 µg/L) and lowest for∑DiDP metabolites (1.91 µg/L) and ∑DINCH metabolites (3.57 µg/L). In adolescents highest GMs were found for MEP (43.3 µg/L), ∑DEHP metabolites (28.8 µg/L), and MiBP (25.6 µg/L) and lowest for ∑DiDP metabolites (= 2.02 µg/L) and ∑DINCH metabolites (2.51 µg/L). In addition, GMs and P95 stratified by European region, sex, household education level, and degree of urbanization are presented. Differences in average biomarker concentrations between sampling sites (data collections) ranged from factor 2 to 9. Compared to the European average, children in the sampling sites OCC (Denmark), InAirQ (Hungary), and SPECIMEn (The Netherlands) had the lowest concentrations across all metabolites and ESTEBAN (France), NAC II (Italy), and CROME (Greece) the highest. For adolescents, comparably higher metabolite concentrations were found in NEB II (Norway), PCB cohort (Slovakia), and ESTEBAN (France), and lower concentrations in POLAES (Poland), FLEHS IV (Belgium), and GerES V-sub (Germany). Multivariate analyses (Survey Generalized Linear Models) indicate compound-specific differences in average metabolite concentrations between the four European regions. Comparison of individual levels with HBM-GVs revealed highest rates of exceedances for DnBP and DiBP, with up to 3 and 5%, respectively, in children and adolescents. No exceedances were observed for DEP and DINCH. With our results we provide current, detailed, and comparable data on exposure to phthalates in children and - for the first time - in adolescents, and - for the first time - on DINCH in children and adolescents of all four regions of Europe which are particularly suited to inform exposure and risk assessment and answer open policy relevant questions.
Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Humanos , Criança , Adolescente , Exposição Ambiental/análise , Poluentes Ambientais/análise , Ácidos Ftálicos/metabolismoRESUMO
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM.
RESUMO
Currently used pesticides are rapidly metabolised and excreted, primarily in urine, and urinary concentrations of pesticides/metabolites are therefore useful biomarkers for the integrated exposure from all sources. Pyrethroid insecticides, the organophosphate insecticide chlorpyrifos, and the herbicide glyphosate, were among the prioritised substances in the HBM4EU project and comparable human biomonitoring (HBM)-data were obtained from the HBM4EU Aligned Studies. The aim of this review was to supplement these data by presenting additional HBM studies of the priority pesticides across the HBM4EU partner countries published since 2000. We identified relevant studies (44 for pyrethroids, 23 for chlorpyrifos, 24 for glyphosate) by literature search using PubMed and Web of Science. Most studies were from the Western and Southern part of the EU and data were lacking from more than half of the HBM4EU-partner countries. Many studies were regional with relatively small sample size and few studies address residential and occupational exposure. Variation in urine sampling, analytical methods, and reporting of the HBM-data hampered the comparability of the results across studies. Despite these shortcomings, a widespread exposure to these substances in the general EU population with marked geographical differences was indicated. The findings emphasise the need for harmonisation of methods and reporting in future studies as initiated during HBM4EU.
RESUMO
Humans are potentially exposed to a large amount of chemicals present in the environment and in the workplace. In the European Human Biomonitoring initiative (Human Biomonitoring for the European Unionâ¯=â¯HBM4EU), acrylamide, mycotoxins (aflatoxin B1, deoxynivalenol, fumonisin B1), diisocyanates (4,4'-methylenediphenyl diisocyanate, 2,4- and 2,6-toluene diisocyanate), and pyrethroids were included among the prioritized chemicals of concern for human health. For the present literature review, the analytical methods used in worldwide biomonitoring studies for these compounds were collected and presented in comprehensive tables, including the following parameter: determined biomarker, matrix, sample amount, work-up procedure, available laboratory quality assurance and quality assessment information, analytical techniques, and limit of detection. Based on the data presented in these tables, the most suitable methods were recommended. According to the paradigm of biomonitoring, the information about two different biomarkers of exposure was evaluated: a) internal doseâ¯=â¯parent compounds and metabolites in urine and blood; and b) the biologically effectiveâ¯=â¯dose measured as blood protein adducts. Urine was the preferred matrix used for deoxynivalenol, fumonisin B1, and pyrethroids (biomarkers of internal dose). Markers of the biological effective dose were determined as hemoglobin adducts for diisocyanates and acrylamide, and as serum-albumin-adducts of aflatoxin B1 and diisocyanates. The analyses and quantitation of the protein adducts in blood or the metabolites in urine were mostly performed with LC-MS/MS or GC-MS in the presence of isotope-labeled internal standards. This review also addresses the critical aspects of the application, use and selection of biomarkers. For future biomonitoring studies, a more comprehensive approach is discussed to broaden the selection of compounds.
Assuntos
Micotoxinas , Piretrinas , Acrilamida , Aflatoxina B1 , Albuminas , Monitoramento Biológico , Biomarcadores/urina , Cromatografia Líquida , União Europeia , Fumonisinas , Hemoglobinas , Humanos , Espectrometria de Massas em Tandem/métodos , TricotecenosRESUMO
Few data are available on the exposure of children to glyphosate (Gly) in Europe. Within HBM4EU, new HBM exposure data were collected from aligned studies at five sampling sites distributed over Europe (studies: SLO CRP (SI); ORGANIKO (CY); GerES V-sub (DE); 3XG (BE); ESTEBAN (FR)). Median Gly concentrations in urine were below or around the detection limit (0.1 µg/L). The 95th percentiles ranged between 0.18 and 1.03 µg Gly/L. The ratio of AMPA (aminomethylphosphonic acid; main metabolite of Gly) to Gly at molar basis was on average 2.2 and the ratio decreased with higher Gly concentrations, suggesting that other sources of AMPA, independent of metabolism of Gly to AMPA in the monitored participants, may concurrently operate. Using reverse dosimetry and HBM exposure data from five European countries (east, west and south Europe) combined with the proposed ADI (acceptable daily intake) of EFSA for Gly of 0.1 mg/kg bw/day (based on histopathological findings in the salivary gland of rats) indicated no human health risks for Gly in the studied populations at the moment. However, the absence of a group ADI for Gly+AMPA and ongoing discussions on e.g., endocrine disrupting effects cast some uncertainty in relation to the current single substance ADI for Gly. The carcinogenic effects of Gly are still debated in the scientific community. These outcomes would influence the risk conclusions presented here. Finally, regression analyses did not find clear associations between urinary exposure biomarkers and analyzed potential exposure determinants. More information from questionnaires targeting exposure-related behavior just before the sampling is needed.
RESUMO
Within HBM4EU, human biomonitoring (HBM) studies measuring glyphosate (Gly) and aminomethylphosphonic acid (AMPA) in urine samples from the general adult population were aligned and quality-controlled/assured. Data from four studies (ESB Germany (2015-2020); Swiss HBM4EU study (2020); DIET-HBM Iceland (2019-2020); ESTEBAN France (2014-2016)) were included representing Northern and Western Europe. Overall, median values were below the reported quantification limits (LOQs) (0.05-0.1 µg/L). The 95th percentiles (P95) ranged between 0.24 and 0.37 µg/L urine for Gly and between 0.21 and 0.38 µg/L for AMPA. Lower values were observed in adults compared to children. Indications exist for autonomous sources of AMPA in the environment. As for children, reversed dosimetry calculations based on HBM data in adults did not lead to exceedances of the ADI (proposed acceptable daily intake of EFSA for Gly 0.1 mg/kg bw/day based on histopathological findings in the salivary gland of rats) indicating no human health risks in the studied populations at the moment. However, the controversy on carcinogenicity, potential endocrine effects and the absence of a group ADI for Gly and AMPA induce uncertainty to the risk assessment. Exposure determinant analysis showed few significant associations. More data on specific subgroups, such as those occupationally exposed or living close to agricultural fields or with certain consumption patterns (vegetarian, vegan, organic food, high cereal consumer), are needed to evaluate major exposure sources.
RESUMO
The objectives of the study were to estimate the current exposure to cadmium (Cd) in Europe, potential differences between the countries and geographic regions, determinants of exposure and to derive European exposure levels. The basis for this work was provided by the European Human Biomonitoring Initiative (HBM4EU) which established a framework for alignment of national or regional HBM studies. For the purpose of Cd exposure assessment, studies from 9 European countries (Iceland, Denmark, Poland, Czech Republic, Croatia, Portugal, Germany, France, Luxembourg) were included and urine of 20-39 years old adults sampled in the years 2014-2021 (n = 2510). The measurements in urine were quality assured by the HBM4EU quality assurance/quality control scheme, study participants' questionnaire data were post-harmonized. Spatially resolved external data, namely Cd concentrations in soil, agricultural areas, phosphate fertilizer application, traffic density and point source Cd release were collected for the respective statistical territorial unit (NUTS). There were no distinct geographic patterns observed in Cd levels in urine, although the data revealed some differences between the specific study sites. The levels of exposure were otherwise similar between two time periods within the last decade (DEMOCOPHES - 2011-2012 vs. HBM4EU Aligned Studies, 2014-2020). The age-dependent alert values for Cd in urine were exceeded by 16% of the study participants. Exceedances in the different studies and locations ranged from 1.4% up to 42%. The studies with largest extent of exceedance were from France and Poland. Association analysis with individual food consumption data available from participants' questionnaires showed an important contribution of vegetarian diet to the overall exposure, with 35% higher levels in vegetarians as opposed to non-vegetarians. For comparison, increase in Cd levels due to smoking was 25%. Using NUTS2-level external data, positive associations between HBM data and percentage of cropland and consumption of Cd-containing mineral phosphate fertilizer were revealed, which indicates a significant contribution of mineral phosphate fertilizers to human Cd exposure through diet. In addition to diet, traffic and point source release were identified as significant sources of exposure in the study population. The findings of the study support the recommendation by EFSA to reduce Cd exposure as also the estimated mean dietary exposure of adults in the EU is close or slightly exceeding the tolerable weekly intake. It also indicates that regulations are not protecting the population sufficiently.
Assuntos
Cádmio , Monitoramento Ambiental , Adulto , Humanos , Adulto Jovem , Cádmio/urina , Monitoramento Ambiental/métodos , Fertilizantes/análise , Europa (Continente) , Inquéritos e Questionários , Fosfatos/análiseRESUMO
Acrylamide, a substance potentially carcinogenic in humans, represents a very prevalent contaminant in food and is also contained in tobacco smoke. Occupational exposure to higher concentrations of acrylamide was shown to induce neurotoxicity in humans. To minimize related risks for public health, it is vital to obtain data on the actual level of exposure in differently affected segments of the population. To achieve this aim, acrylamide has been added to the list of substances of concern to be investigated in the HBM4EU project, a European initiative to obtain biomonitoring data for a number of pollutants highly relevant for public health. This report summarizes the results obtained for acrylamide, with a focus on time-trends and recent exposure levels, obtained by HBM4EU as well as by associated studies in a total of seven European countries. Mean biomarker levels were compared by sampling year and time-trends were analyzed using linear regression models and an adequate statistical test. An increasing trend of acrylamide biomarker concentrations was found in children for the years 2014-2017, while in adults an overall increase in exposure was found to be not significant for the time period of observation (2000-2021). For smokers, represented by two studies and sampling for, over a total three years, no clear tendency was observed. In conclusion, samples from European countries indicate that average acrylamide exposure still exceeds suggested benchmark levels and may be of specific concern in children. More research is required to confirm trends of declining values observed in most recent years.
RESUMO
Pyrethroids are a major insecticide class, suitable for biomonitoring in humans. Due to similarities in structure and metabolic pathways, urinary metabolites are common to various active substances. A tiered approach is proposed for risk assessment. Tier I was a conservative screening for overall pyrethroid exposure, based on phenoxybenzoic acid metabolites. Subsequently, probabilistic approaches and more specific metabolites were used for refining the risk estimates. Exposure was based on 95th percentiles from HBM4EU aligned studies (2014-2021) covering children in Belgium, Cyprus, France, Israel, Slovenia, and The Netherlands and adults in France, Germany, Israel, and Switzerland. In all children populations, the 95th percentiles for 3-phenoxybenzoic acid (3-PBA) exceeded the screening value. The probabilistic refinement quantified the risk level of the most exposed population (Belgium) at 2% or between 1-0.1% depending on the assumptions. In the substance specific assessments, the 95th percentiles of urinary concentrations in the aligned studies were well below the respective human biomonitoring guidance values (HBM-GVs). Both information sets were combined for refining the combined risk. Overall, the HBM data suggest a low health concern, at population level, related to pyrethroid exposure for the populations covered by the studies, even though a potential risk for highly exposed children cannot be completely excluded. The proposed tiered approach, including a screening step and several refinement options, seems to be a promising tool of scientific and regulatory value in future.
RESUMO
More than 20 years ago, acrylamide was added to the list of potential carcinogens found in many common dietary products and tobacco smoke. Consequently, human biomonitoring studies investigating exposure to acrylamide in the form of adducts in blood and metabolites in urine have been performed to obtain data on the actual burden in different populations of the world and in Europe. Recognizing the related health risk, the European Commission responded with measures to curb the acrylamide content in food products. In 2017, a trans-European human biomonitoring project (HBM4EU) was started with the aim to investigate exposure to several chemicals, including acrylamide. Here we set out to provide a combined analysis of previous and current European acrylamide biomonitoring study results by harmonizing and integrating different data sources, including HBM4EU aligned studies, with the aim to resolve overall and current time trends of acrylamide exposure in Europe. Data from 10 European countries were included in the analysis, comprising more than 5500 individual samples (3214 children and teenagers, 2293 adults). We utilized linear models as well as a non-linear fit and breakpoint analysis to investigate trends in temporal acrylamide exposure as well as descriptive statistics and statistical tests to validate findings. Our results indicate an overall increase in acrylamide exposure between the years 2001 and 2017. Studies with samples collected after 2018 focusing on adults do not indicate increasing exposure but show declining values. Regional differences appear to affect absolute values, but not the overall time-trend of exposure. As benchmark levels for acrylamide content in food have been adopted in Europe in 2018, our results may imply the effects of these measures, but only indicated for adults, as corresponding data are still missing for children.