RESUMO
White-blooded Antarctic icefishes, a family within the adaptive radiation of Antarctic notothenioid fishes, are an example of extreme biological specialization to both the chronic cold of the Southern Ocean and life without hemoglobin. As a result, icefishes display derived physiology that limits them to the cold and highly oxygenated Antarctic waters. Against these constraints, remarkably one species, the pike icefish Champsocephalus esox, successfully colonized temperate South American waters. To study the genetic mechanisms underlying secondarily temperate adaptation in icefishes, we generated chromosome-level genome assemblies of both C. esox and its Antarctic sister species, Champsocephalus gunnari. The C. esox genome is similar in structure and organization to that of its Antarctic congener; however, we observe evidence of chromosomal rearrangements coinciding with regions of elevated genetic divergence in pike icefish populations. We also find several key biological pathways under selection, including genes related to mitochondria and vision, highlighting candidates behind temperate adaptation in C. esox. Substantial antifreeze glycoprotein (AFGP) pseudogenization has occurred in the pike icefish, likely due to relaxed selection following ancestral escape from Antarctica. The canonical AFGP locus organization is conserved in C. esox and C. gunnari, but both show a translocation of two AFGP copies to a separate locus, previously unobserved in cryonotothenioids. Altogether, the study of this secondarily temperate species provides an insight into the mechanisms underlying adaptation to ecologically disparate environments in this otherwise highly specialized group.
Assuntos
Adaptação Fisiológica , Perciformes , Animais , Regiões Antárticas , Peixes/genética , Perciformes/genética , Genômica , Proteínas AnticongelantesRESUMO
Cape lions (Panthera leo melanochaitus) formerly ranged throughout the grassland plains of the "Cape Flats" in what is today known as the Western Cape Province, South Africa. Cape lions were likely eradicated because of overhunting and habitat loss after European colonization. European naturalists originally described Cape lions as "black-maned lions" and claimed that they were phenotypically distinct. However, other depictions and historical descriptions of lions from the Cape report mixed or light coloration and without black or extensively developed manes. These findings suggest that, rather than forming a distinct population, Cape lions may have had phenotypic and genotypic variation similar to other African lions. Here we investigate Cape lion genome characteristics, population dynamics, and genetic distinctiveness prior to their extinction. We generated genomic data from 2 historic Cape lions to compare to 118 existing high-coverage mitogenomes, and low-coverage nuclear genomes of 53 lions from 13 African countries. We show that, before their eradication, lions from the Cape Flats had diverse mitogenomes and nuclear genomes that clustered with lions from both southern and eastern Africa. Cape lions had high genome-wide heterozygosity and low inbreeding coefficients, indicating that populations in the Cape Flats went extinct so rapidly that genomic effects associated with long-term small population size and isolation were not detectable. Our findings do not support the characterization of Cape lions as phylogeographically distinct, as originally put forth by some European naturalists, and illustrates how alternative knowledge systems, for example, Indigenous perspectives, could potentially further inform interpretations of species histories.
Assuntos
Leões , Animais , Leões/genética , Genômica , África do Sul , Genoma , Dinâmica PopulacionalRESUMO
Nuclear mitochondrial pseudogenes (numts) may hinder the reconstruction of mtDNA genomes and affect the reliability of mtDNA datasets for phylogenetic and population genetic comparisons. Here, we present the program Numt Parser, which allows for the identification of DNA sequences that likely originate from numt pseudogene DNA. Sequencing reads are classified as originating from either numt or true cytoplasmic mitochondrial (cymt) DNA by direct comparison against cymt and numt reference sequences. Classified reads can then be parsed into cymt or numt datasets. We tested this program using whole genome shotgun-sequenced data from 2 ancient Cape lions (Panthera leo), because mtDNA is often the marker of choice for ancient DNA studies and the genus Panthera is known to have numt pseudogenes. Numt Parser decreased sequence disagreements that were likely due to numt pseudogene contamination and equalized read coverage across the mitogenome by removing reads that likely originated from numts. We compared the efficacy of Numt Parser to 2 other bioinformatic approaches that can be used to account for numt contamination. We found that Numt Parser outperformed approaches that rely only on read alignment or Basic Local Alignment Search Tool (BLAST) properties, and was effective at identifying sequences that likely originated from numts while having minimal impacts on the recovery of cymt reads. Numt Parser therefore improves the reconstruction of true mitogenomes, allowing for more accurate and robust biological inferences.
Assuntos
Genoma Mitocondrial , Panthera , Animais , Pseudogenes , Panthera/genética , Filogenia , Reprodutibilidade dos Testes , DNA Mitocondrial/genética , Núcleo Celular/genética , Análise de Sequência de DNARESUMO
Sensory systems allow for the transfer of environmental stimuli into internal cues that can alter physiology and behavior. Many studies of visual systems focus on opsins to compare spectral sensitivity among individuals, populations, and species living in different lighting environments. This requires an understanding of the cone opsins, which can be numerous. The bluefin killifish is a good model for studying the interaction between environments and visual systems as they are found in both clear springs and tannin-stained swamps. We conducted a genome-wide screening and demonstrated that the bluefin killifish has 9 cone opsins: 1 SWS1 (354 nm), 2 SWS2 (SWS2B: 359 nm, SWS2A: 448 nm), 2 RH2 (RH2-2: 476 nm, RH2-1: 537 nm), and 4 LWS (LWS-1: 569 nm, LWS-2: 524 nm, LWS-3: 569 nm, LWS-R: 560 or 569 nm). These 9 cone opsins were located on 4 scaffolds. One scaffold contained the 2 SWS2 and 3 of the 4 LWS opsins in the same syntenic order as found in other cyprinodontoid fishes. We also compared opsin expression in larval and adult killifish under clear water conditions, which mimic springs. Two of the newly discovered opsins (LWS-2 and LWS-3) were expressed at low levels (<0.2%). Whether these opsins make meaningful contributions to visual perception in other contexts (i.e., swamp conditions) is unclear. In contrast, there was an ontogenetic change from using LWS-R to LWS-1 opsin. Bluefin killifish adults may be slightly more sensitive to longer wavelengths, which might be related to sexual selection and/or foraging preferences.
Assuntos
Opsinas dos Cones , Proteínas de Peixes , Fundulidae , Animais , Opsinas dos Cones/genética , Proteínas de Peixes/genética , Fundulidae/genética , Filogenia , Opsinas de Bastonetes/genética , Análise de SequênciaRESUMO
For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively-parallel, short-read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired-end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400-800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference-aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired-end de novo data sets.
Assuntos
Genética Populacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Teorema de Bayes , Genótipo , Humanos , Metagenômica/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , SoftwareRESUMO
Hybrid zones are dynamic systems where natural selection, sexual selection, and other evolutionary forces can act on reshuffled combinations of distinct genomes. The movement of hybrid zones, individual traits, or both are of particular interest for understanding the interplay between selective processes. In a hybrid zone involving two lek-breeding birds, secondary sexual plumage traits of Manacus vitellinus, including bright yellow collar and olive belly color, have introgressed ~50 km asymmetrically across the genomic center of the zone into populations more genetically similar to Manacus candei. Males with yellow collars are preferred by females and are more aggressive than parental M. candei, suggesting that sexual selection was responsible for the introgression of male traits. We assessed the spatial and temporal dynamics of this hybrid zone using historical (1989-1994) and contemporary (2017-2020) transect samples to survey both morphological and genetic variation. Genome-wide single nucleotide polymorphism data and several male phenotypic traits show that the genomic center of the zone has remained spatially stable, whereas the olive belly color of male M. vitellinus has continued to introgress over this time period. Our data suggest that sexual selection can continue to shape phenotypes dynamically, independent of a stable genomic transition between species.
Assuntos
Plumas , Introgressão Genética , Hibridização Genética , Animais , Masculino , Feminino , Pigmentação/genética , Fenótipo , Seleção Sexual , Polimorfismo de Nucleotídeo Único , Passeriformes/genética , Passeriformes/fisiologiaRESUMO
Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.
Assuntos
Conservação dos Recursos Naturais , Genômica , Humanos , Conservação dos Recursos Naturais/métodos , Biodiversidade , GenomaRESUMO
Library preparation protocols for most sequencing technologies involve PCR amplification of the template DNA, which open the possibility that a given template DNA molecule is sequenced multiple times. Reads arising from this phenomenon, known as PCR duplicates, inflate the cost of sequencing and can jeopardize the reliability of affected experiments. Despite the pervasiveness of this artefact, our understanding of its causes and of its impact on downstream statistical analyses remains essentially empirical. Here, we develop a general quantitative model of amplification distortions in sequencing data sets, which we leverage to investigate the factors controlling the occurrence of PCR duplicates. We show that the PCR duplicate rate is determined primarily by the ratio between library complexity and sequencing depth, and that amplification noise (including in its dependence on the number of PCR cycles) only plays a secondary role for this artefact. We confirm our predictions using new and published RAD-seq libraries and provide a method to estimate library complexity and amplification noise in any data set containing PCR duplicates. We discuss how amplification-related artefacts impact downstream analyses, and in particular genotyping accuracy. The proposed framework unites the numerous observations made on PCR duplicates and will be useful to experimenters of all sequencing technologies where DNA availability is a concern.
Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , DNA/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
The basal South American notothenioid Eleginops maclovinus (Patagonia blennie or róbalo) occupies a uniquely important phylogenetic position in Notothenioidei as the singular closest sister species to the Antarctic cryonotothenioid fishes. Its genome and the traits encoded therein would be the nearest representatives of the temperate ancestor from which the Antarctic clade arose, providing an ancestral reference for deducing polar derived changes. In this study, we generated a gene- and chromosome-complete assembly of the E. maclovinus genome using long read sequencing and HiC scaffolding. We compared its genome architecture with the more basally divergent Cottoperca gobio and the derived genomes of nine cryonotothenioids representing all five Antarctic families. We also reconstructed a notothenioid phylogeny using 2918 proteins of single-copy orthologous genes from these genomes that reaffirmed E. maclovinus' phylogenetic position. We additionally curated E. maclovinus' repertoire of circadian rhythm genes, ascertained their functionality by transcriptome sequencing, and compared its pattern of gene retention with C. gobio and the derived cryonotothenioids. Through reconstructing circadian gene trees, we also assessed the potential role of the retained genes in cryonotothenioids by referencing to the functions of the human orthologs. Our results found E. maclovinus to share greater conservation with the Antarctic clade, solidifying its evolutionary status as the direct sister and best suited ancestral proxy of cryonotothenioids. The high-quality genome of E. maclovinus will facilitate inquiries into cold derived traits in temperate to polar evolution, and conversely on the paths of readaptation to non-freezing habitats in various secondarily temperate cryonotothenioids through comparative genomic analyses.
Assuntos
Perciformes , Humanos , Animais , Filogenia , Regiões Antárticas , Perciformes/genética , Peixes/genética , CromossomosRESUMO
Restriction enzymes have been one of the primary tools in the population genetics toolkit for 50 years, being coupled with each new generation of technology to provide a more detailed view into the genetics of natural populations. Restriction site-Associated DNA protocols, which joined enzymes with short-read sequencing technology, have democratized the field of population genomics, providing a means to assay the underlying alleles in scores of populations. More than 10 years on, the technique has been widely applied across the tree of life and served as the basis for many different analysis techniques. Here, we provide a detailed protocol to conduct a RAD analysis from experimental design to de novo analysis-including parameter optimization-as well as reference-based analysis, all in Stacks version 2, which is designed to work with paired-end reads to assemble RAD loci up to 1000 nucleotides in length. The protocol focuses on major points of friction in the molecular approaches and downstream analysis, with special attention given to validating experimental analyses. Finally, the protocol provides several points of departure for further analysis.
Assuntos
Genômica , Metagenômica , Enzimas de Restrição do DNA/genética , Genética Populacional , Genômica/métodos , Metagenômica/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodosRESUMO
Restriction-site associated DNA sequencing (RADseq) has become a powerful and versatile tool in modern population genomics, enabling large-scale evolutionary and genomic analyses in otherwise inaccessible biological systems. With its widespread use, different variants on the protocol have been developed to suit specific experimental needs. Researchers face the challenge of choosing the optimal molecular and sequencing protocols for their reduced representation experimental design, an often-complicated process. Strategic errors can lead to biased data generation that has reduced power to answer biological questions. Here, we present RADinitio, simulation software for the selection and optimization of RADseq experiments via the generation of sequencing data that behave similarly to empirical sources. RADinitio provides an evolutionary simulation of populations, implementation of various RADseq protocols with customizable parameters, and thorough assessment of missing data. We test the efficacy of the software using different RAD protocols across several organisms, highlighting the importance of protocol selection on the magnitude and quality of data acquired. Additionally, we test the effects of RAD library preparation and sequencing on allelic dropout, observing that library preparation and sequencing often contributes more to missing alleles than population-level variation.
Assuntos
Simulação por Computador , Genômica , Projetos de Pesquisa , Análise de Sequência de DNA , Software , MetagenômicaRESUMO
Morphologically similar species, that is cryptic species, may be similar or quasi-similar owing to the deceleration of morphological evolution and stasis. While the factors underlying the deceleration of morphological evolution or stasis in cryptic species remain unknown, decades of research in the field of paleontology on punctuated equilibrium have originated clear hypotheses. Species are expected to remain morphologically identical in scenarios of shared genetic variation, such as hybridization and incomplete lineage sorting, or in scenarios where bottlenecks reduce genetic variation and constrain the evolution of morphology. Here, focusing on three morphologically similar Stygocapitella species, we employ a whole-genome amplification method (WGA) coupled with double-digestion restriction-site associated DNA sequencing (ddRAD) to reconstruct the evolutionary history of the species complex. We explore population structure, use population-level statistics to determine the degree of connectivity between populations and species, and determine the most likely demographic scenarios which generally reject for recent hybridization. We find that the combination of WGA and ddRAD allowed us to obtain genomic-level data from microscopic eukaryotes (â¼1 millimetre) opening up opportunities for those working with population genomics and phylogenomics in such taxa. The three species share genetic variance, likely from incomplete lineage sorting and ancient admixture. We speculate that the degree of shared variation might underlie morphological similarity in the Atlantic species complex.
RESUMO
The underlying genetic changes that regulate the appearance and disappearance of repeated traits, or serial homologs, remain poorly understood. One hypothesis is that variation in genomic regions flanking master regulatory genes, also known as input-output genes, controls variation in trait number, making the locus of evolution almost predictable. Another hypothesis implicates genetic variation in up- or downstream loci of master control genes. Here, we use the butterfly Bicyclus anynana, a species that exhibits natural variation in eyespot number on the dorsal hindwing, to test these two hypotheses. We first estimated the heritability of dorsal hindwing eyespot number by breeding multiple butterfly families differing in eyespot number and regressing eyespot numbers of offspring on midparent values. We then estimated the number and identity of independent genetic loci contributing to eyespot number variation by performing a genome-wide association study with restriction site-associated DNA sequencing from multiple individuals varying in number of eyespots sampled across a freely breeding laboratory population. We found that dorsal hindwing eyespot number has a moderately high heritability of â¼0.50 and is characterized by a polygenic architecture. Previously identified genomic regions involved in eyespot development, and novel ones, display high association with dorsal hindwing eyespot number, suggesting that homolog number variation is likely determined by regulatory changes at multiple loci that build the trait, and not by variation at single master regulators or input-output genes.