Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G473-G483, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29927320

RESUMO

The reflexive activities of the gastrointestinal tract are regulated, in part, by precise interactions between neurons and glia in the enteric nervous system (ENS). Intraganglionic enteric glia are a unique type of peripheral glia that surround enteric neurons and regulate neuronal function, activity, and survival. Enteric glia express numerous neurotransmitter receptors that allow them to sense neuronal activity, but it is not clear if enteric glia monitor acetylcholine (ACh), the primary excitatory neurotransmitter in the ENS. Here, we tested the hypothesis that enteric glia detect ACh and that glial activation by ACh contributes to the physiological regulation of gut functions. Our results show that myenteric enteric glia express both the M3 and M5 subtypes of muscarinic receptors (MRs) and that muscarine drives intracellular calcium (Ca2+) signaling predominantly through M3R activation. To elucidate the functional effects of activation of glial M3Rs, we used GFAP::hM3Dq mice that express a modified human M3R (hM3Dq) exclusively on glial fibrillary acidic protein (GFAP) positive glia to directly activate glial hM3Dqs using clozapine- N-oxide. Using spatiotemporal mapping analysis, we found that the activation of glial hM3Dq receptors enhances motility reflexes ex vivo. Continuous stimulation of hM3Dq receptors in vivo, drove changes in gastrointestinal motility without affecting neuronal survival in the ENS and glial muscarinic receptor activation did not alter neuron survival in vitro. Our results provide the first evidence that GFAP intraganglionic enteric glia express functional muscarinic receptors and suggest that the activation of glial muscarinic receptors contributes to the physiological regulation of functions. NEW & NOTEWORTHY Enteric glia are emerging as novel regulators of enteric reflex circuits, but little is still known regarding the effects of specific transmitter pathways on glia and the resulting consequences on enteric reflexes. Here, we provide the first evidence that enteric glia monitor acetylcholine in the enteric nervous system and that glial activation by acetylcholine is a physiological mechanism that contributes to the functional regulation of intestinal reflexes.


Assuntos
Acetilcolina/metabolismo , Sistema Nervoso Entérico/metabolismo , Motilidade Gastrointestinal , Neuroglia/metabolismo , Receptor Muscarínico M3/metabolismo , Animais , Cálcio/metabolismo , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reflexo
2.
Neurotoxicology ; 100: 72-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065418

RESUMO

The exact causes of Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurological disorder due to loss of upper and/or lower motoneurons, remain elusive. Gene-environment interactions are believed to be an important factor in the development of ALS. We previously showed that in vivo exposure of mice overexpressing the human superoxide dismutase 1 (hSOD1) gene mutation (hSOD1G93A; G93A), a mouse model for ALS, to environmental neurotoxicant methylmercury (MeHg) accelerated the onset of ALS-like phenotype. Here we examined the time-course of effects of MeHg on AMPA receptor (AMPAR)-mediated currents in hypoglossal motoneurons in brainstem slices prepared from G93A, hSOD1wild-type (hWT) and non-carrier WT mice following in vivo exposure to MeHg. Mice were exposed daily to 3 ppm (approximately 0.7 mg/kg/day) MeHg via drinking water beginning at postnatal day 28 (P28) and continued until P47, 64 or 84, then acute brainstem slices were prepared, and spontaneous excitatory postsynaptic currents (sEPSCs) or AMPA-evoked currents were examined using whole cell patch-clamp recording technique. Brainstem slices of untreated littermates were prepared at the same time points to serve as control. MeHg exposure had no significant effect on either sEPSCs or AMPA-evoked currents in slices from hWT or WT mice during any of those exposure time periods under our experimental conditions. MeHg also did not cause any significant effect on sEPSCs or AMPA-currents in G93A hypoglossal motoneurons at P47 and P64. However, at P84, MeHg significantly increased amplitudes of both sEPSCs and AMPA-evoked currents in hypoglossal motineurons from G93A mice (p < 0.05), but not the sEPSC frequency, suggesting a postsynaptic action on AMPARs. MeHg exposure did not cause any significant effect on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). Therefore, MeHg exposure in vivo caused differential effects on AMPARs in hypoglossal motoneurons from mice with different genetic backgrounds. MeHg appears to preferentially stimulate the AMPAR-mediated currents in G93A hypoglossal motoneurons in an exposure time-dependent manner, which may contribute to the AMPAR-mediated motoneuron excitotoxicity, thereby facilitating development of ALS-like phenotype.


Assuntos
Esclerose Lateral Amiotrófica , Compostos de Metilmercúrio , Camundongos , Humanos , Animais , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/genética , Compostos de Metilmercúrio/toxicidade , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Superóxido Dismutase/metabolismo , Camundongos Transgênicos , Neurônios Motores/metabolismo , Tronco Encefálico/metabolismo , Mutação , Modelos Animais de Doenças , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA