RESUMO
INTRODUCTION: Alzheimer's disease (AD) features changes in mitochondrial structure and function. Investigators debate where to position mitochondrial pathology within the chronology and context of other AD features. METHODS: To address whether mitochondrial dysfunction alters AD-implicated genes and proteins, we treated SH-SY5Y cells and induced pluripotent stem cell (iPSC)-derived neurons with chloramphenicol, an antibiotic that inhibits mtDNA-generated transcript translation. We characterized adaptive, AD-associated gene, and AD-associated protein responses. RESULTS: SH-SY5Y cells and iPSC neurons responded to mtDNA transcript translation inhibition by increasing mtDNA copy number and transcription. Nuclear-expressed respiratory chain mRNA and protein levels also changed. There were AD-consistent concordant and model-specific changes in amyloid precursor protein, beta amyloid, apolipoprotein E, tau, and α-synuclein biology. DISCUSSION: Primary mitochondrial dysfunction induces compensatory organelle responses, changes nuclear gene expression, and alters the biology of AD-associated genes and proteins in ways that may recapitulate brain aging and AD molecular phenomena. HIGHLIGHTS: In AD, mitochondrial dysfunction could represent a disease cause or consequence. We inhibited mitochondrial translation in human neuronal cells and neurons. Mitochondrial and nuclear gene expression shifted in adaptive-consistent patterns. APP, Aß, APOE, tau, and α-synuclein biology changed in AD-consistent patterns. Mitochondrial stress creates an environment that promotes AD pathology.
RESUMO
DNA strand breaks excessively accumulate in the brains of patients with Alzheimer's disease (AD). While traditionally considered random, deleterious events, neuron activity itself induces DNA breaks, and these "adaptive" breaks help mediate synaptic plasticity and memory formation. Recent studies mapping the brain DNA break landscape reveal that despite a net increase in DNA breaks in ectopic genomic hotspots, adaptive DNA breaks around synaptic genes are lost in AD brains, and this is associated with transcriptomic dysregulation. Additionally, relationships exist between mitochondrial dysfunction, a hallmark of AD, and DNA damage, such that mitochondrial dysfunction may perturb adaptive DNA break formation, while DNA breaks may conversely impair mitochondrial function. A failure of DNA break physiology could, therefore, potentially contribute to AD pathogenesis.
Assuntos
Doença de Alzheimer , Mitocôndrias , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Humanos , Neurônios/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Animais , Quebras de DNA , Plasticidade Neuronal/genética , Encéfalo/metabolismo , Encéfalo/patologia , Dano ao DNARESUMO
Background: Cardiac optical mapping is an imaging technique that measures fluorescent signals across a cardiac preparation. Dual optical imaging of voltage-sensitive and calcium-sensitive probes allows for simultaneous recordings of cardiac action potentials and intracellular calcium transients with high spatiotemporal resolution. The analysis of these complex optical datasets is both time intensive and technically challenging; as such, we have developed a software package for semi-automated image processing and analysis. Herein, we report an updated version of our software package (KairoSight-3.0) with features to enhance the characterization of cardiac parameters using optical signals. Methods: To test software validity and applicability, we used Langendorff-perfused heart preparations to record transmembrane voltage and intracellular calcium signals from the epicardial surface. Isolated hearts from guinea pigs and rats were loaded with a potentiometric dye (RH237) and/or calcium indicator dye (Rhod-2AM) and fluorescent signals were acquired. We used Python 3.8.5 programming language to develop the KairoSight-3.0 software. Cardiac maps were validated with a user-specified manual mapping approach. Results: Manual maps of action potential duration (30 or 80 % repolarization), calcium transient duration (30 or 80 % reuptake), action potential and calcium transient alternans were constituted to validate the accuracy of software-generated maps. Manual and software maps had high accuracy, with >97 % of manual and software values falling within 10 ms of each other and >75 % within 5 ms for action potential duration and calcium transient duration measurements (n = 1000-2000 pixels). Further, our software package includes additional measurement tools to analyze signal-to-noise ratio, conduction velocity, action potential and calcium transient alternans, and action potential-calcium transient coupling time to produce physiologically meaningful optical maps. Conclusions: KairoSight-3.0 has enhanced capabilities to perform measurements of cardiac electrophysiology, calcium handling, alternans, and the excitation-contraction coupling with satisfactory accuracy.
RESUMO
Background: Cardiac optical mapping is an imaging technique that measures fluorescent signals across a cardiac preparation. Dual optical mapping of voltage-sensitive and calcium-sensitive probes allow for simultaneous recordings of cardiac action potentials and intracellular calcium transients with high spatiotemporal resolution. The analysis of these complex optical datasets is both time intensive and technically challenging; as such, we have developed a software package for semi-automated image processing and analysis. Herein, we report an updated version of our software package ( KairoSight-3 . 0 ) with features to enhance characterization of cardiac parameters using optical signals. Methods: To test software validity and applicability, we used Langendorff-perfused heart preparations to record transmembrane voltage and intracellular calcium signals from the epicardial surface. Isolated hearts from guinea pigs and rats were loaded with a potentiometric dye (RH237) and/or calcium indicator dye (Rhod-2AM) and fluorescent signals were acquired. We used Python 3.8.5 programming language to develop the KairoSight-3 . 0 software. Cardiac maps were validated with a user-specified manual mapping approach. Results: Manual maps of action potential duration (30 or 80% repolarization), calcium transient duration (30 or 80% reuptake), action potential and calcium transient alternans were constituted to validate the accuracy of software-generated maps. Manual and software maps had high accuracy, with >97% of manual and software values falling within 10 ms of each other and >75% within 5 ms for action potential duration and calcium transient duration measurements (n=1000-2000 pixels). Further, our software package includes additional cardiac metric measurement tools to analyze signal-to-noise ratio, conduction velocity, action potential and calcium transient alternans, and action potential-calcium transient coupling time to produce physiologically meaningful optical maps. Conclusions: KairoSight-3 . 0 has enhanced capabilities to perform measurements of cardiac electrophysiology, calcium handling, and the excitation-contraction coupling with satisfactory accuracy. Graphical Abstract Demonstrating Experimental and Data Analysis Workflow: Created with Biorender.com.
RESUMO
Di-2-ethylhexyl phthalate (DEHP) is commonly used in the manufacturing of plastic materials, including intravenous bags, blood storage bags, and medical-grade tubing. DEHP can leach from plastic medical products, which can result in inadvertent patient exposure. DEHP concentrations were measured in red blood cell units stored between 7 and 42 days (17-119 µg/ml). Using these concentrations as a guide, Langendorff-perfused rat heart preparations were acutely exposed to DEHP. Sinus activity remained stable with lower doses of DEHP (25-50 µg/ml), but sinus rate declined by 43% and sinus node recovery time (SNRT) prolonged by 56.5% following 30-min exposure to 100 µg/ml DEHP. DEHP exposure also exerted a negative dromotropic response, as indicated by a 69.4% longer PR interval, 108.5% longer Wenckebach cycle length (WBCL), and increased incidence of atrioventricular (AV) uncoupling (60-min exposure). Pretreatment with doxycycline partially rescued the effects of DEHP on sinus activity, but did not ameliorate the effects on AV conduction. DEHP exposure also prolonged the ventricular action potential and effective refractory period, but had no measurable effect on intracellular calcium transient duration. Follow-up studies using human-induced pluripotent stem cell-derived cardiomyocytes confirmed that DEHP slows electrical conduction in a time (15 min-3 h) and dose-dependent manner (10-100 µg/ml). Previous studies have suggested that phthalate toxicity is specifically attributed to metabolites of DEHP, including mono-2-ethylhexylphthalate. This study demonstrates that DEHP exposure also contributes to cardiac dysfunction in a dose- and time-dependent manner. Future work is warranted to investigate the impact of DEHP (and its metabolites) on human health, with special consideration for clinical procedures that employ plastic materials.
Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Ratos , Animais , Plastificantes/toxicidade , Dietilexilftalato/toxicidade , Ácidos Ftálicos/metabolismo , Potenciais de AçãoRESUMO
Di-2-ethylhexylphthalate (DEHP) is commonly used in the manufacturing of plastic materials, including intravenous bags, blood storage bags, and medical-grade tubing. DEHP can leach from plastic medical products, which can result in inadvertent patient exposure. DEHP concentrations were measured in red blood cell (RBC) units stored between 7-42 days (23-119 µg/mL). Using these concentrations as a guide, Langendorff-perfused rat heart preparations were acutely exposed to DEHP. Sinus activity remained stable with lower doses of DEHP (25-50 µg/mL), but sinus rate declined by 43% and sinus node recovery time prolonged by 56.5% following 30-minute exposure to 100 µg/ml DEHP. DEHP exposure also exerted a negative dromotropic response, as indicated by a 69.4% longer PR interval, 108.5% longer Wenckebach cycle length, and increased incidence of atrioventricular uncoupling. Pretreatment with doxycycline partially rescued the effects of DEHP on sinus activity, but did not ameliorate the effects on atrioventricular conduction. DEHP exposure also prolonged the ventricular action potential and effective refractory period, but had no measurable effect on intracellular calcium transient duration. Follow-up studies using hiPSC-CM confirmed that DEHP slows electrical conduction in a time (15 min - 3 hours) and dose-dependent manner (10-100 µg/mL). Previous studies have suggested that phthalate toxicity is specifically attributed to metabolites of DEHP, including mono-2-ethylhexyl phthalate (MEHP). This study demonstrates that DEHP exposure also contributes to cardiac dysfunction in a dose- and time-dependent manner. Future work is warranted to investigate the impact of DEHP (and its metabolites) on human health, with special consideration for clinical procedures that employ plastic materials.
RESUMO
Electrocardiograms (ECG) are universally used to measure the electrical activity of the heart; however, variations in recording techniques and/or subject demographics can affect ECG interpretation. In this study, we investigated variables that are likely to influence ECG metric measurements in cardiovascular research, including recording technique, use of anesthesia, and animal model characteristics. Awake limb lead ECG recordings were collected in vivo from adult guinea pigs using a platform ECG system, while recordings in anesthetized animals were performed using both a platform and needle ECG system. We report significant heterogeneities in ECG metric values that are attributed to methodological differences (e.g., ECG lead configuration, ECG recording platform, presence or absence of anesthesia) that persist even within the same cohort of animals. Further, we report that variability in animal demographics is preserved in vivo ECG recordings-with animal age serving as a significant contributor, while sex-specific influences were less pronounced. Methodological approaches and subject demographics should be fully considered when interpreting ECG values in animal models, comparing datasets between studies, or developing artificial intelligence algorithms that utilize an ECG database.