RESUMO
The phenotypic analysis of root system growth is important to inform efforts to enhance plant resource acquisition from soils; however, root phenotyping remains challenging because of the opacity of soil, requiring systems that facilitate root system visibility and image acquisition. Previously reported systems require costly or bespoke materials not available in most countries, where breeders need tools to select varieties best adapted to local soils and field conditions. Here, we report an affordable soil-based growth (rhizobox) and imaging system to phenotype root development in glasshouses or shelters. All components of the system are made from locally available commodity components, facilitating the adoption of this affordable technology in low-income countries. The rhizobox is large enough (approximately 6000 cm2 of visible soil) to avoid restricting vertical root system growth for most if not all of the life cycle, yet light enough (approximately 21 kg when filled with soil) for routine handling. Support structures and an imaging station, with five cameras covering the whole soil surface, complement the rhizoboxes. Images are acquired via the Phenotiki sensor interface, collected, stitched and analysed. Root system architecture (RSA) parameters are quantified without intervention. The RSAs of a dicot species (Cicer arietinum, chickpea) and a monocot species (Hordeum vulgare, barley), exhibiting contrasting root systems, were analysed. Insights into root system dynamics during vegetative and reproductive stages of the chickpea life cycle were obtained. This affordable system is relevant for efforts in Ethiopia and other low- and middle-income countries to enhance crop yields and climate resilience sustainably.
Assuntos
Raízes de Plantas/anatomia & histologia , Envelhecimento , Cicer/anatomia & histologia , Cicer/genética , Genótipo , Hordeum/anatomia & histologia , Hordeum/genética , Fenótipo , SoloRESUMO
Trigger valves are fundamental features in capillary-driven microfluidic systems that stop fluid at an abrupt geometric expansion and release fluid when there is flow in an orthogonal channel connected to the valve. The concept was originally demonstrated in closed-channel capillary circuits. We show here that trigger valves can be successfully implemented in open channels. We also show that a series of open-channel trigger valves can be placed alongside or opposite a main channel resulting in a layered capillary flow. We developed a closed form model for the dynamics of the flow at trigger valves based on the concept of average friction length and successfully validated the model against experiments. For the main channel, we discuss layered flow behavior in the light of the Taylor-Aris dispersion theory and in the channel turns by considering Dean theory of mixing. This work has potential applications in autonomous microfluidics systems for biosensing, at-home or point-of-care sample preparation devices, hydrogel patterning for 3D cell culture and organ-on-a-chip models.
RESUMO
Extracellular Vesicles (EVs) are membrane-derived vesicles shed by cells into the extracellular space that play key roles in intercellular communication and other biological processes. As membrane-bound cargos of nucleic acids and other proteins that are abundantly found in virtually every biofluid including blood, urine, and saliva, EVs are widely regarded as promising biomarkers for disease detection. While it is an increasingly promising biofluid from which to isolate EVs, saliva poses challenges due its complexity and heterogeneity-cells, debris, and other proteins can inhibit the isolation of EVs by traditional platforms. Here, we employ the CandyCollect, a lollipop-inspired sampling device with open microfluidic channels, as a non-invasive and patient-friendly alternative for the capture of salivary EVs. The CandyCollect simplifies sample preparation by effectively pre-concentrating EVs on the device surface before EVs are eluted off of the CandyCollect, labeled with cholesterol-tagged oligonucleotides, and subsequently detected by qPCR with primers specific for the tagged oligos to enumerate the relative number of EVs. We demonstrate that downstream EV cargo analysis can be performed using Simoa. Overall, the CandyCollect ushers a new method to capture, enumerate, and analyze salivary EVs.
RESUMO
State the purpose: Obtaining high-quality samples to diagnose streptococcal pharyngitis in pediatric patients is challenging due to discomfort associated with traditional pharyngeal swabs. This may cause reluctance to go to the clinic, inaccurate diagnosis, or inappropriate treatment for children with sore throat. Here, we determined the efficacy of CandyCollect, a lollipop-inspired open-microfluidic pathogen collection device, to capture Group A Streptococcus (GAS) and compare user preference for CandyCollect, conventional pharyngeal swabs, or mouth swabs in children with pharyngitis and their caregivers. Results: All child participants (30/30) were positive for GAS by qPCR on both the mouth swab and CandyCollect. Caregivers ranked CandyCollect as a good sampling method overall (27/30), and all caregivers (30/30) would recommend CandyCollect for children 5 years and older. Twenty-three of 30 children "really like" the taste and 24/30 would prefer to use CandyCollect if a future test were needed. All caregivers (30/30) and most children (28/30) would be willing to use CandyCollect at home. Conclusion: All participants tested positive for GAS on all three collection methods (pharyngeal swab, mouth swab, and CandyCollect). While both caregivers and children like CandyCollect, some caregivers would prefer a shorter collection time. Future work includes additional studies with larger cohorts presenting with pharyngitis of unknown etiology and shortening collection time while maintaining the attractive form of the device. Translational Impact Statement: Obtaining oral samples for the diagnosis of streptococcal pharyngitis is of great importance for children. To address the challenges associated with traditional pharyngeal swab sampling, we developed the CandyCollect device, a lollipop-inspired open mesofluidic saliva sampling system. In this study, saliva samples were collected from children, aged 5-14 years, with CandyCollect and mouth swabs and analyzed via qPCR. The results show CandyCollect is the child preferred collection tool and had 100% concordance with the results from traditional diagnosis methods as part of their clinical care.
RESUMO
The CandyCollect device is a lollipop-inspired open fluidic oral sampling device designed to provide a comfortable user sampling experience. We demonstrate that the CandyCollect device can be coupled with a rapid antigen detection test (RADT) kit designed for Group A Streptococcus (GAS). Through in vitro experiments with pooled saliva spiked with Streptococcus pyogenes we tested various reagents and elution volumes to optimize the RADT readout from CandyCollect device samples. The resulting optimized protocol uses the kit-provided reagents and lateral flow assay (LFA) while replacing the kit's pharyngeal swab with the CandyCollect device, reducing the elution solution volume, and substituting the tube used for elution to accommodate the CandyCollect device. Positive test results were detected by eye with bacterial concentrations as low as the manufacturer's "minimal detection limit" - 1.5×105 CFU/mL. LFA strips were also scanned and quantified with image analysis software to determine the signal-to-baseline ratio (SBR) and categorize positive test results without human bias. We tested our optimized protocol for integrating CandyCollect and RADT using CandyCollect clinical samples from pediatric patients (n=6) who were previously diagnosed with GAS pharyngitis via pharyngeal swabs tested with RADT as part of their clinical care. The LFA results of these CandyCollect devices and interspersed negative controls were determined by independent observers, with positive results obtained in four of the six participants on at least one LFA replicate. Taken together, our results show that CandyCollect devices from children with GAS pharyngitis can be tested using LFA rapid tests.