Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biomol Struct Dyn ; 40(3): 1430-1440, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32996404

RESUMO

Cytosolic glutathione S-transferase (GST) enzymes participate in several cellular processes in addition to facilitating glutathione conjugation reactions that eliminate endogenous and exogenous toxic compounds, especially electrophiles. GSTs are thought to interact with various kinases, resulting in the modulation of apoptotic processes and cellular proliferation. The present research used a combination of in silico and in vitro studies to investigate protein-protein interactions between the seven most abundant cytosolic GSTs-GST alpha-1 (GST-A1), GST alpha-2 (GST-A2), GST mu-1 (GST-M1), GST mu-2 (GST-M2), GST mu-5 (GST-M5), GST theta-1 (GST-T1) and GST pi-1 (GST-P1)-and Mitogen-activated protein kinase 8 (MAPK8) and Apoptosis signal-regulating kinase 1 (ASK1). MAPK8 and ASK1 were chosen as this study's protein interaction partners because of their predominant role in electrophile or cytokine-induced stress-mediated apoptosis, inflammation and fibrosis. The highest degree of sequence homology or sequence similarity was observed in two GST subgroups: the GST-A1, GST-A2 and GST-P1 isoforms constituted subgroup1; the GST-M1, GST-M2 and GST-M5 isoforms constituted subgroup 2. The GST-T1 isoform diverged from these isoforms. In silico investigations revealed that GST-M1 showed a significantly higher binding affinity to MAPK8, and its complex was more structurally stable than the other isoforms, in the order GST-M1 > GST-M5 > GST-P1 > GST-A2 > GST-A1 > GST-M2 > GST-T1. Similarly, GST-A1, GST-P1 and GST-T1 actively interacted with ASK1, and their structural stability was also better, in the order GST-T1 > GST-A1 > GST-P1 > GST-A2 > GST-M5 > GST-M1 > GST-M2. To validate in silico results, we performed in vitro crosslinking and mass spectroscopy experiments. Results indicated that GST-M1 interacted with GST-T1 to form heterodimers and confirmed the predicted interaction between GST-M1 and MAPK8.Communicated by Ramaswamy H. Sarma.


Assuntos
MAP Quinase Quinase Quinase 5 , Proteína Quinase 8 Ativada por Mitógeno , Apoptose , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Espectrometria de Massas
2.
BMC Mol Cell Biol ; 23(1): 5, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062878

RESUMO

BACKGROUND: Sinusoidal occlusion syndrome (SOS) is a potentially severe complication following hematopoietic stem cell transplantation (HSCT) in pediatric patients. Treatment related risk factors such as intensity of conditioning, hepatotoxic co-medication and patient related factors such as genetic variants predispose individuals to develop SOS. The variant allele for SNP rs17146905 in UDP-glucuronosyl transferase 2B10 (UGT2B10) gene was correlated with the occurrence of SOS in an exome-wide association study. UGT2B10 is a phase II drug metabolizing enzyme involved in the N-glucuronidation of tertiary amine containing drugs. METHODS: To shed light on the functionality of UGT2B10 enzyme in the metabolism of drugs used in pediatric HSCT setting, we performed in silico screening against custom based library of putative ligands. First, a list of potential substrates for in silico analysis was prepared using a systematic consensus-based strategy. The list comprised of drugs and their metabolites used in pediatric HSCT setting. The three-dimensional structure of UGT2B10 was not available from the Research Collaboratory Structural Bioinformatics - Protein Data Bank (RCSB - PDB) repository and thus we predicted the first human UGT2B10 3D model by using multiple template homology modeling with MODELLER Version 9.2 and molecular docking calculations with AutoDock Vina Version 1.2 were implemented to quantify the estimated binding affinity between selected putative substrates or ligands and UGT2B10. Finally, we performed molecular dynamics simulations using GROMACS Version 5.1.4 to confirm the potential UGT2B10 ligands prioritized after molecular docking (exhibiting negative free binding energy). RESULTS: Four potential ligands for UGT2B10 namely acetaminophen, lorazepam, mycophenolic acid and voriconazole n-oxide intermediate were identified. Other metabolites of voriconazole satisfied the criteria of being possible ligands of UGT2B10. Except for bilirubin and 4-Hydroxy Voriconazole, all the ligands (particularly voriconazole and hydroxy voriconazole) are oriented in substrate binding site close to the co-factor UDP (mean ± SD; 0.72 ± 0.33 nm). Further in vitro screening of the putative ligands prioritized by in silico pipeline is warranted to understand the nature of the ligands either as inhibitors or substrates of UGT2B10. CONCLUSIONS: These results may indicate the clinical and pharmacological relevance UGT2B10 in pediatric HSCT setting. With this systematic computational methodology, we provide a rational-, time-, and cost-effective way to identify and prioritize the interesting putative substrates or inhibitors of UGT2B10 for further testing in in vitro experiments.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Preparações Farmacêuticas , Criança , Glucuronosiltransferase/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Simulação de Acoplamento Molecular , Difosfato de Uridina
3.
J Cancer Res Clin Oncol ; 148(1): 71-86, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34499222

RESUMO

PURPOSE: This study aimed to retrospectively evaluate the genetic association of null variants of glutathione S-transferases GSTM1 and GSTT1 with relapse incidence in children with hematological malignancies (HMs) undergoing busulfan (BU)- containing allogeneic hematopoietic stem cell transplantation (HSCT) and to assess the impact of these variants on BU-induced cytotoxicity on the immortalized lymphoblastoid cell lines (LCLs) and tumor THP1 GST gene-edited cell models. METHODS: GSTM1- and GSTT1-null alleles were genotyped using germline DNA from whole blood prior to a conditioning BU-based regimen. Association of GSTM1- and GSTT1-null variants with relapse incidence was analyzed using multivariable competing risk analysis. BU-induced cell death studies were conducted in GSTs- null and non-null LCLs and CRISPR-Cas9 gene-edited THP1 leukemia cell lines. RESULTS: Carrying GSTM1/GSTT1 double null genotype was found to be an independent risk factor for post-HSCT relapse in 86 children (adjusted HR: 6.52 [95% Cl, 2.76-15.42; p = 1.9 × 10-5]). BU-induced cell death preferentially in THP1GSTM1(non-null) and LCLsGSTM1(non-null) as shown by decreased viability, increased necrosis and levels of the oxidized form of glutathione compared to null cells, while GSTT1 non-null cells showed increased baseline proliferation. CONCLUSION: The clinical association suggests that GSTM1/GSTT1 double null genotype could serve as genetic stratification biomarker for the high risk of post-HSCT relapse. Functional studies have indicated that GSTM1 status modulates BU-induced cell death. On the other hand, GSTT1 is proposed to be involved in baseline cell proliferation.


Assuntos
Glutationa Transferase/genética , Neoplasias Hematológicas/genética , Leucemia/genética , Recidiva Local de Neoplasia/genética , Adolescente , Biomarcadores Tumorais/genética , Bussulfano/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Pré-Escolar , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Deleção de Genes , Predisposição Genética para Doença/genética , Genótipo , Glutationa/análise , Glutationa/metabolismo , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Leucemia/patologia , Leucemia/terapia , Masculino , Estudos Retrospectivos , Fatores de Risco
4.
Drug Metab Lett ; 14(3): 163-165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34984966

RESUMO

BACKGROUND: Glutathione S-transferases (GSTs) are phase II metabolic enzymes crucial for the metabolism of electrophilic drugs. Additionally, several GST isoforms are involved in protein- protein interaction with mitogen-activated protein kinases (MAPKs), modulating apoptosis pathways. METHODS: To assess the potential change of enzymatic activity, we performed a GST enzyme assay with human recombinant GSTM1 in the presence and absence of MAPK8. Recently, GSTM1 has been demonstrated to interact with MAPK8 both in silico and in vitro. The binding interface predicted in silico comprised amino acid residues present on the surface of the protein and a few were deep in the active site of the protein. RESULTS: The experiment demonstrated that the GSTM1 activity was conserved even in the presence of MAPK8 in the assay. CONCLUSION: The possible alteration in the activity of MAPK8 in this interaction needs to be evaluated in further experiments.


Assuntos
Glutationa Transferase , Proteína Quinase 8 Ativada por Mitógeno , Aminoácidos , Humanos , Isoformas de Proteínas
5.
J Vis Exp ; (164)2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104076

RESUMO

Glutathione S-transferases (GSTs) are metabolic enzymes responsible for the elimination of endogenous or exogenous electrophilic compounds by glutathione (GSH) conjugation. In addition, GSTs are regulators of mitogen-activated protein kinases (MAPKs) involved in apoptotic pathways. Overexpression of GSTs is correlated with decreased therapeutic efficacy among patients undergoing chemotherapy with electrophilic alkylating agents. Using GST inhibitors may be a potential solution to reverse this tendency and augment treatment potency. Achieving this goal requires the discovery of such compounds, with an accurate, quick, and easy enzyme assay. A spectrophotometric protocol using 1-chloro-2,4-dinitrobenzene (CDNB) as the substrate is the most employed method in the literature. However, already described GST inhibition experiments do not provide a protocol detailing each stage of an optimal inhibition assay, such as the measurement of the Michaelis-Menten constant (Km) for CDNB or indication of the employed enzyme concentration, crucial parameters to assess the inhibition potency of a tested compound. Hence, with this protocol, we describe each step of an optimized spectrophotometric GST enzyme assay, to screen libraries of potential inhibitors. We explain the calculation of both the half-maximal inhibitory concentration (IC50) and the constant of inhibition (Ki)-two characteristics used to measure the potency of an enzyme inhibitor. The method described can be implemented using a pool of GSTs extracted from cells or pure recombinant human GSTs, namely GST alpha 1 (GSTA1), GST mu 1 (GSTM1) or GST pi 1 (GSTP1). However, this protocol cannot be applied to GST theta 1 (GSTT1), as CDNB is not a substrate for this isoform. This method was used to test the inhibition potency of curcumin using GSTs from equine liver. Curcumin is a molecule exhibiting anti-cancer properties and showed affinity towards GST isoforms after in silico docking predictions. We demonstrated that curcumin is a potent competitive GST inhibitor, with an IC50 of 31.6 ± 3.6 µM and a Ki of 23.2 ± 3.2 µM. Curcumin has potential to be combined with electrophilic chemotherapy medication to improve its efficacy.


Assuntos
Citosol/enzimologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Espectrofotometria/métodos , Animais , Curcumina/farmacologia , Dinitrobenzenos/metabolismo , Ácido Etacrínico/farmacologia , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Cavalos , Concentração Inibidora 50 , Isoenzimas/metabolismo , Cinética , Fígado/enzimologia , Especificidade por Substrato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA