Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
PRiMER ; 8: 24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681811

RESUMO

Introduction: Nutrition education remains inadequate in American medical schools, and physicians often cite lack of nutrition knowledge as a barrier to counseling patients. The goal of this study was to evaluate the impact of additional nutrition curriculum on first-year medical students. Methods: We created a 1-hour nutrition lecture, delivered to first-year medical students. Using pre-, post-, and 3-month follow-up surveys, we assessed the following: (1) change in student knowledge; (2) confidence in counseling patients; (3) motivation to change their personal dietary behaviors; and (4) satisfaction with the curriculum. We assessed objectives using multiple choice questions and 10-point Likert scale questions. Results: Of the 142 students who attended the live lecture, 105 (73.9%) completed both pre- and postsurveys, and 65 (45.8%) completed the 3-month follow-up survey. Students' knowledge of the material increased from 37% to 82%, but retention dropped to 65% at the 3-month mark (P<.001). Comfort in assessing and counseling patients improved across the three survey iterations, from 3.53 to 5.90 to 8.00 (P<.001). Motivation to change personal behaviors was high overall at 8.04, 8.36 and 8.25 [P<.05]). Moreover, students were satisfied with the lecture, with a rating of 8.58/10. Conclusions: This study supports the value of additional medical student nutrition education. This curriculum significantly increases student knowledge, comfort with the material, and confidence in counseling their future patients. A longitudinal curriculum that reinforces concepts over time will help improve long-term retention.

2.
Clin Exp Gastroenterol ; 17: 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38205357

RESUMO

Porphyrias are, for the most part, inherited disorders of the heme biosynthetic pathway which lead to accumulation of specific intermediates responsible for most of the symptoms and signs of biochemically active disease. Acute hepatic porphyrias usually come to clinical attention primarily in women in their reproductive years who present with episodic, severe, generalized abdominal pain. Such acute attacks may also be associated with tachycardia, systemic arterial hypertension, hyponatremia, recent history of dark reddish to brownish urine, and anxiety, delirium, and sensory or motor neuropathies. Diagnosing AHPs is often challenging, requiring a high index of suspicion and the appropriate testing showing elevated ALA and/or PBG in a random urine specimen. Obstacles to diagnosis include inappropriate testing for porphyrins only, inadequate sample handling, and ordering genetic testing as the initial diagnostic test. While some of these pitfalls in diagnosis are surmountable with current knowledge, others are in need of more research.

3.
J Neurosurg Spine ; 41(2): 292-304, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728765

RESUMO

OBJECTIVE: The goal of this study was to assess the safety of mapping spinal cord locomotor networks using penetrating stimulation microelectrodes in Yucatan minipigs (YMPs) as a clinically translational animal model. METHODS: Eleven YMPs were trained to walk up and down a straight line. Motion capture was performed, and electromyographic (EMG) activity of hindlimb muscles was recorded during overground walking. The YMPs underwent a laminectomy and durotomy to expose the lumbar spinal cord. Using an ultrasound-guided stereotaxic frame, microelectrodes were inserted into the spinal cord in 8 animals. Pial cuts were made to prevent tissue dimpling before microelectrode insertion. Different locations within the lumbar enlargement were electrically stimulated to map the locomotor networks. The remaining 3 YMPs served as sham controls, receiving the laminectomy, durotomy, and pial cuts but not microelectrode insertion. The Porcine Thoracic Injury Behavioral Scale (PTIBS) and hindlimb reflex assessment results were recorded for 4 weeks postoperatively. Overground gait kinematics and hindlimb EMG activity were recorded again at weeks 3 and 4 postoperatively and compared with preoperative measures. The animals were euthanized at the end of week 4, and the lumbar spinal cords were extracted and preserved for immunohistochemical analysis. RESULTS: All YMPs showed transient deficits in hindlimb function postoperatively. Except for 1 YMP in the experimental group, all animals regained normal ambulation and balance (PTIBS score 10) at the end of weeks 3 and 4. One animal in the experimental group showed gait and balance deficits by week 4 (PTIBS score 4). This animal was excluded from the kinematics and EMG analyses. Overground gait kinematic measures and EMG activity showed no significant (p > 0.05) differences between preoperative and postoperative values, and between the experimental and sham groups. Less than 5% of electrode tracks were visible in the tissue analysis of the animals in the experimental group. There was no statistically significant difference in damage caused by pial cuts between the experimental and sham groups. Tissue damage due to the pial cuts was more frequently observed in immunohistochemical analyses than microelectrode tracks. CONCLUSIONS: These findings suggest that mapping spinal locomotor networks in porcine models can be performed safely, without lasting damage to the spinal cord.


Assuntos
Eletromiografia , Microeletrodos , Medula Espinal , Porco Miniatura , Animais , Suínos , Medula Espinal/cirurgia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Membro Posterior , Marcha/fisiologia , Feminino , Estimulação Elétrica/métodos , Modelos Animais , Fenômenos Biomecânicos/fisiologia
4.
Commun Med (Lond) ; 4(1): 38, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499690

RESUMO

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a familial cardiac disease associated with ventricular arrhythmias and an increased risk of sudden cardiac death. Currently, there are no approved treatments that address the underlying genetic cause of this disease, representing a significant unmet need. Mutations in Plakophilin-2 (PKP2), encoding a desmosomal protein, account for approximately 40% of ARVC cases and result in reduced gene expression. METHODS: Our goal is to examine the feasibility and the efficacy of adeno-associated virus 9 (AAV9)-mediated restoration of PKP2 expression in a cardiac specific knock-out mouse model of Pkp2. RESULTS: We show that a single dose of AAV9:PKP2 gene delivery prevents disease development before the onset of cardiomyopathy and attenuates disease progression after overt cardiomyopathy. Restoration of PKP2 expression leads to a significant extension of lifespan by restoring cellular structures of desmosomes and gap junctions, preventing or halting decline in left ventricular ejection fraction, preventing or reversing dilation of the right ventricle, ameliorating ventricular arrhythmia event frequency and severity, and preventing adverse fibrotic remodeling. RNA sequencing analyses show that restoration of PKP2 expression leads to highly coordinated and durable correction of PKP2-associated transcriptional networks beyond desmosomes, revealing a broad spectrum of biological perturbances behind ARVC disease etiology. CONCLUSIONS: We identify fundamental mechanisms of PKP2-associated ARVC beyond disruption of desmosome function. The observed PKP2 dose-function relationship indicates that cardiac-selective AAV9:PKP2 gene therapy may be a promising therapeutic approach to treat ARVC patients with PKP2 mutations.


Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heart disease that leads to abnormal heartbeats and a higher risk of sudden cardiac death. ARVC is often caused by changes in a gene called PKP2, that then makes less PKP2 protein. PKP2 protein is important for the normal structure and function of the heart. Human ARVC characteristics can be mimicked in a mouse model missing this gene. Given no therapeutic option, our goal was to test if adding a working copy of PKP2 gene in the heart of this mouse model, using a technique called gene therapy that can deliver genes to cells, could improve heart function. Here, we show that a single dose of PKP2 gene therapy can improve heart function and heartbeats as well as extend lifespan in mice. PKP2 gene therapy may be a promising approach to treat ARVC patients with PKP2 mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA