Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 80(6): 1078-1091.e6, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33290746

RESUMO

We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.


Assuntos
COVID-19/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Genoma Viral , Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Animais , Antivirais/farmacologia , COVID-19/genética , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/genética , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Nucleocapsídeo/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , SARS-CoV-2/genética , Células Vero , Tratamento Farmacológico da COVID-19
2.
RNA ; 28(1): 88-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670845

RESUMO

One proposed role for biomolecular condensates that contain RNA is translation regulation. In several specific contexts, translation has been shown to be modulated by the presence of a phase-separating protein and under conditions which promote phase separation, and likely many more await discovery. A powerful tool for determining the rules for condensate-dependent translation is the use of engineered RNA sequences, which can serve as reporters for translation efficiency. This Perspective will discuss design features to consider in engineering RNA reporters to determine the role of phase separation in translational regulation. Specifically, we will cover (i) how to engineer RNA sequence to recapitulate native protein/RNA interactions, (ii) the advantages and disadvantages for commonly used reporter RNA sequences, and (iii) important control experiments to distinguish between binding- and condensation-dependent translational repression. The goal of this review is to promote the design and application of faithful translation reporters to demonstrate a physiological role of biomolecular condensates in translation.


Assuntos
Condensados Biomoleculares/química , Engenharia Genética/métodos , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Ribonucleoproteínas/química , Sítios de Ligação , Condensados Biomoleculares/metabolismo , Eucariotos , Células Eucarióticas/metabolismo , Imunofluorescência/métodos , Genes Reporter , Ligação Proteica , Biossíntese de Proteínas , Dobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
3.
Nucleic Acids Res ; 50(14): 8168-8192, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871289

RESUMO

Nucleocapsid protein (N-protein) is required for multiple steps in betacoronaviruses replication. SARS-CoV-2-N-protein condenses with specific viral RNAs at particular temperatures making it a powerful model for deciphering RNA sequence specificity in condensates. We identify two separate and distinct double-stranded, RNA motifs (dsRNA stickers) that promote N-protein condensation. These dsRNA stickers are separately recognized by N-protein's two RNA binding domains (RBDs). RBD1 prefers structured RNA with sequences like the transcription-regulatory sequence (TRS). RBD2 prefers long stretches of dsRNA, independent of sequence. Thus, the two N-protein RBDs interact with distinct dsRNA stickers, and these interactions impart specific droplet physical properties that could support varied viral functions. Specifically, we find that addition of dsRNA lowers the condensation temperature dependent on RBD2 interactions and tunes translational repression. In contrast RBD1 sites are sequences critical for sub-genomic (sg) RNA generation and promote gRNA compression. The density of RBD1 binding motifs in proximity to TRS-L/B sequences is associated with levels of sub-genomic RNA generation. The switch to packaging is likely mediated by RBD1 interactions which generate particles that recapitulate the packaging unit of the virion. Thus, SARS-CoV-2 can achieve biochemical complexity, performing multiple functions in the same cytoplasm, with minimal protein components based on utilizing multiple distinct RNA motifs that control N-protein interactions.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , RNA de Cadeia Dupla , SARS-CoV-2 , Sítios de Ligação , Proteínas do Nucleocapsídeo de Coronavírus/química , Fosfoproteínas/química , RNA de Cadeia Dupla/genética , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , Temperatura
4.
Biophys J ; 120(14): 2771-2784, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34214535

RESUMO

Viruses must efficiently and specifically package their genomes while excluding cellular nucleic acids and viral subgenomic fragments. Some viruses use specific packaging signals, which are conserved sequence or structure motifs present only in the full-length genome. Recent work has shown that viral proteins important for packaging can undergo liquid-liquid phase separation (LLPS), in which one or two viral nucleic acid binding proteins condense with the genome. The compositional simplicity of viral components lends itself well to theoretical modeling compared with more complex cellular organelles. Viral LLPS can be limited to one or two viral proteins and a single genome that is enriched in LLPS-promoting features. In our previous study, we observed that LLPS-promoting sequences of severe acute respiratory syndrome coronavirus 2 are located at the 5' and 3' ends of the genome, whereas the middle of the genome is predicted to consist mostly of solubilizing elements. Is this arrangement sufficient to drive single genome packaging, genome compaction, and genome cyclization? We addressed these questions using a coarse-grained polymer model, LASSI, to study the LLPS of nucleocapsid protein with RNA sequences that either promote LLPS or solubilization. With respect to genome cyclization, we find the most optimal arrangement restricts LLPS-promoting elements to the 5' and 3' ends of the genome, consistent with the native spatial patterning. Genome compaction is enhanced by clustered LLPS-promoting binding sites, whereas single genome packaging is most efficient when binding sites are distributed throughout the genome. These results suggest that many and variably positioned LLPS-promoting signals can support packaging in the absence of a singular packaging signal which argues against necessity of such a feature. We hypothesize that this model should be generalizable to multiple viruses as well as cellular organelles such as paraspeckles, which enrich specific long RNA sequences in a defined arrangement.

6.
bioRxiv ; 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33442696

RESUMO

Viruses must efficiently and specifically package their genomes while excluding cellular nucleic acids and viral sub-genomic fragments. Some viruses use specific packaging signals, which are conserved sequence/structure motifs present only in the full-length genome. Recent work has shown that viral proteins important for packaging can undergo liquid-liquid phase separation (LLPS), where one or two viral nucleic acid binding proteins condense with the genome. The compositional simplicity of viral components lends itself well to theoretical modeling compared to more complex cellular organelles. Viral LLPS can be limited to one or two viral proteins and a single genome that is enriched in LLPS-promoting features. In our previous study, we observed that LLPS-promoting sequences of SARS-CoV-2 are located at the 5' and 3' ends of the genome, whereas the middle of the genome is predicted to consist mostly of solubilizing elements. Is this arrangement sufficient to drive single genome packaging, genome compaction, and genome cyclization? We addressed these questions using a coarse-grained polymer model, LASSI, to study the LLPS of nucleocapsid protein with RNA sequences that either promote LLPS or solubilization. With respect to genome cyclization, we find the most optimal arrangement restricts LLPS-promoting elements to the 5' and 3' ends of the genome, consistent with the native spatial patterning. Genome compaction is enhanced by clustered LLPS-promoting binding sites, while single genome packaging is most efficient when binding sites are distributed throughout the genome. These results suggest that many and variably positioned LLPS-promoting signals can support packaging in the absence of a singular packaging signal which argues against necessity of such a feature. We hypothesize that this model should be generalizable to multiple viruses as well as cellular organelles like paraspeckles, which enrich specific, long RNA sequences in a defined arrangement.

7.
bioRxiv ; 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34159327

RESUMO

Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.

8.
Nat Commun ; 7: 11178, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025950

RESUMO

Clustered regularly-interspaced palindromic repeats (CRISPR)-based genetic screens using single-guide-RNA (sgRNA) libraries have proven powerful to identify genetic regulators. Applying CRISPR screens to interrogate functional elements in noncoding regions requires generating sgRNA libraries that are densely covering, and ideally inexpensive, easy to implement and flexible for customization. Here we present a Molecular Chipper technology for generating dense sgRNA libraries for genomic regions of interest, and a proof-of-principle screen that identifies novel cis-regulatory domains for miR-142 biogenesis. The Molecular Chipper approach utilizes a combination of random fragmentation and a type III restriction enzyme to derive a densely covering sgRNA library from input DNA. Applying this approach to 17 microRNAs and their flanking regions and with a reporter for miR-142 activity, we identify both the pre-miR-142 region and two previously unrecognized cis-domains important for miR-142 biogenesis, with the latter regulating miR-142 processing. This strategy will be useful for identifying functional noncoding elements in mammalian genomes.


Assuntos
Mapeamento Cromossômico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma , MicroRNAs/genética , RNA Guia de Cinetoplastídeos/genética , Regiões não Traduzidas , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Linhagem Celular , Clonagem Molecular , DNA/genética , DNA/metabolismo , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Biblioteca Gênica , Humanos , Camundongos , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Guia de Cinetoplastídeos/metabolismo
9.
Cell Rep ; 5(2): 471-81, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24120864

RESUMO

The Ten-Eleven-Translocation 2 (TET2) gene, which oxidates 5-methylcytosine in DNA to 5-hydroxylmethylcytosine (5hmC), is a key tumor suppressor frequently mutated in hematopoietic malignancies. However, the molecular regulation of TET2 expression is poorly understood. We show that TET2 is under extensive microRNA (miRNA) regulation, and such TET2 targeting is an important pathogenic mechanism in hematopoietic malignancies. Using a high-throughput 3' UTR activity screen, we identify >30 miRNAs that inhibit TET2 expression and cellular 5hmC. Forced expression of TET2-targeting miRNAs in vivo disrupts normal hematopoiesis, leading to hematopoietic expansion and/or myeloid differentiation bias, whereas coexpression of TET2 corrects these phenotypes. Importantly, several TET2-targeting miRNAs, including miR-125b, miR-29b, miR-29c, miR-101, and miR-7, are preferentially overexpressed in TET2-wild-type acute myeloid leukemia. Our results demonstrate the extensive roles of miRNAs in functionally regulating TET2 and cellular 5hmC and reveal miRNAs with previously unrecognized oncogenic potential. Our work suggests that TET2-targeting miRNAs might be exploited in cancer diagnosis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Regiões 3' não Traduzidas , 5-Metilcitosina/análogos & derivados , Animais , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Regulação para Baixo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Hematopoese , Humanos , Camundongos , Fenótipo , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA