Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stroke ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051112

RESUMO

BACKGROUND: Acute ischemic stroke is a leading cause of pediatric death and disability. A clinical scale adapted for children can ensure early detection of candidates for urgent acute ischemic stroke treatment. The Rapid Arterial Occlusion Evaluation (RACE) scale for adults, which scores 5 items (facial palsy 0-2; arm motor function 0-2; leg motor function 0-2; head/gaze deviation 0-1; and aphasia or agnosia 0-2), has good sensitivity and specificity in detecting large vessel occlusion. METHODS: We adapted the previously validated RACE scale for use in children as the Pediatric RACE scale. This adapted scale was tested by prehospital/emergency room staff attending to patients covered by the Catalan Pediatric Stroke Code and child neurologists for its correlation with the Pediatric National Institutes of Health Stroke Scale and for interrater reliability. RESULTS: The study included 50 children, 18 with confirmed strokes (7 acute ischemic strokes and 11 hemorrhagic strokes). Prehospital/emergency staff and child neurologists agreed fully regarding 82% of patients and 100% regarding head/gaze deviation and agnosia. The Pediatric RACE scale correlated strongly with the Pediatric National Institutes of Health Stroke Scale in evaluations by child neurologists (Spearman ρ, 0.852; P<0.001) and prehospital/emergency staff (Spearman ρ, 0.781; P<0.001). The median Pediatric RACE score was significantly higher in patients with large vessel occlusion (6.5; interquartile range, 6-7) than with other etiologies. CONCLUSIONS: Pediatric RACE, showing good interrater reliability and correlation with the Pediatric National Institutes of Health Stroke Scale, is a simple scale to detect candidates for pediatric acute stroke treatment, designed for both prehospital and in-hospital use by non-neurologist medical staff.

2.
Epilepsia ; 65(4): 1029-1045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135915

RESUMO

OBJECTIVE: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.


Assuntos
Encefalopatias , Epilepsia Generalizada , Epilepsia , Deficiência Intelectual , Humanos , Estudos Retrospectivos , Hipotonia Muscular , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/complicações , Encefalopatias/genética , Convulsões/complicações , Epilepsia Generalizada/complicações , Eletroencefalografia/métodos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína 4 Homóloga a Disks-Large/genética
3.
Neurol Genet ; 10(4): e200168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39035822

RESUMO

Objectives: To present a case series of novel CHD2 variants in patients presenting with genetic epileptic and developmental encephalopathy. Background: CHD2 gene encodes an ATP-dependent enzyme, chromodomain helicase DNA-binding protein 2, involved in chromatin remodeling. Pathogenic variants in CHD2 are linked to early-onset conditions such as developmental and epileptic encephalopathy, drug-resistant epilepsies, and neurodevelopmental disorders. Approximately 225 diagnosed patients from 28 countries exhibit various allelic variants in CHD2, including small intragenic deletions/insertions and missense, nonsense, and splice site variants. Results: We present the molecular and clinical characteristics of 17 unreported individuals from 17 families with novel pathogenic or likely pathogenic variants in CHD2. All individuals presented with severe global developmental delay, childhood-onset myoclonic epilepsy, and additional neuropsychiatric features, such as behavioral including autism, ADHD, and hyperactivity. Additional findings include abnormal reflexes, hypotonia and hypertonia, motor impairment, gastrointestinal problems, and kyphoscoliosis. Neuroimaging features included hippocampal signal alterations (4/10), with additional volume loss in 2 cases, inferior vermis hypoplasia (7/10), mild cerebellar atrophy (4/10), and cerebral atrophy (1/10). Discussion: Our study broadens the geographic scope of CHD2-related phenotypes, providing valuable insights into the prevalence and clinical characteristics of this genetic disorder in previously underrepresented populations.

4.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175961

RESUMO

We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-ß in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-ω and/or IFN-α2.


Assuntos
COVID-19 , Interferon Tipo I , Criança , Humanos , Interferon-alfa , Autoanticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA