Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 466(7302): 56-61, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596013

RESUMO

An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10(18) W cm(-2), 1.5-0.6 nm, approximately 10(5) X-ray photons per A(2)). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse-by sequentially ejecting electrons-to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces 'hollow' atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

2.
Phys Rev Lett ; 112(15): 153001, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785035

RESUMO

High harmonic generation (HHG) is used to measure the spectral phase of the recombination dipole matrix element (RDM) in argon over a broad frequency range that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well with predictions based on the scattering phases and amplitudes of the interfering s- and d-channel contributions to the complementary photoionization process. The reconstructed attosecond bursts that underlie the HHG process show that the derivative of the RDM spectral phase, the group delay, does not have a straightforward interpretation as an emission time, in contrast to the usual attochirp group delay. Instead, the rapid RDM phase variation caused by the CM reshapes the attosecond bursts.

3.
Phys Rev Lett ; 108(6): 063007, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401068

RESUMO

Two-color (x-ray+infrared) electron spectroscopy is used for investigating laser-assisted KLL Auger decay following 1s photoionization of atomic Ne with few-femtosecond x-ray pulses from the Linac Coherent Light Source. In an angle-resolved experiment, the overall width of the laser-modified Auger-electron spectrum and its structure change significantly as a function of the emission angle. The spectra are characterized by a strong intensity variation of the sidebands revealing a gross structure. This variation is caused, as predicted by theory, by the interference of electrons emitted at different times within the duration of one optical cycle of the infrared dressing laser, which almost coincides with the lifetime of the Ne 1s vacancy.

4.
Phys Rev Lett ; 106(8): 083002, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21405568

RESUMO

The nonlinear absorption mechanisms of neon atoms to intense, femtosecond kilovolt x rays are investigated. The production of Ne(9+) is observed at x-ray frequencies below the Ne(8+), 1s(2) absorption edge and demonstrates a clear quadratic dependence on fluence. Theoretical analysis shows that the production is a combination of the two-photon ionization of Ne(8+) ground state and a high-order sequential process involving single-photon production and ionization of transient excited states on a time scale faster than the Auger decay. We find that the nonlinear direct two-photon ionization cross section is orders of magnitude higher than expected from previous calculations.

5.
Phys Rev Lett ; 107(23): 233001, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22182083

RESUMO

We show that high fluence, high-intensity x-ray pulses from the world's first hard x-ray free-electron laser produce nonlinear phenomena that differ dramatically from the linear x-ray-matter interaction processes that are encountered at synchrotron x-ray sources. We use intense x-ray pulses of sub-10-fs duration to first reveal and subsequently drive the 1s↔2p resonance in singly ionized neon. This photon-driven cycling of an inner-shell electron modifies the Auger decay process, as evidenced by line shape modification. Our work demonstrates the propensity of high-fluence, femtosecond x-ray pulses to alter the target within a single pulse, i.e., to unveil hidden resonances, by cracking open inner shells energetically inaccessible via single-photon absorption, and to consequently trigger damaging electron cascades at unexpectedly low photon energies.

6.
Phys Rev Lett ; 102(9): 093002, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392517

RESUMO

The group delay dispersion, also known as the attochirp, of high-order harmonics generated in gases has been identified as the main intrinsic limitation to the duration of Fourier-synthesized attosecond pulses. Theory implies that the attochirp, which is inversely proportional to the laser wavelength, can be decreased at longer wavelength. Here we report the first measurement of the wavelength dependence of the attochirp using an all-optical, in situ method [N. Dudovich, Nature Phys. 2, 781 (2006)10.1038/nphys434]. We show that a 2 microm driving wavelength reduces the attochirp with respect to 0.8 microm at comparable intensities.

7.
Opt Lett ; 32(7): 868-70, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17339964

RESUMO

We report the compression of intense, carrier-envelope phase stable mid-IR pulses down to few-cycle duration using an optical filament. A filament in xenon gas is formed by using self-phase stabilized 330 microJ 55 fs pulses at 2 microm produced via difference-frequency generation in a Ti:sapphire-pumped optical parametric amplifier. The ultrabroadband 2 microm carrier-wavelength output is self-compressed below 3 optical cycles and has a 270 microJ pulse energy. The self-locked phase offset of the 2 microm difference-frequency field is preserved after filamentation. This is to our knowledge the first experimental realization of pulse compression in optical filaments at mid-IR wavelengths (lambda>0.8 microm).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA