Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(3): 493-512.e25, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032429

RESUMO

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Ativação do Complemento , Proteoma , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Fatores Quimiotáticos/metabolismo , Citotoxicidade Imunológica , Células Endoteliais/virologia , Feminino , Humanos , Ativação Linfocitária , Masculino , Microvasos/virologia , Pessoa de Meia-Idade , Monócitos/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Análise de Célula Única , Adulto Jovem
2.
Cell ; 157(4): 964-78, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24768691

RESUMO

The otocyst harbors progenitors for most cell types of the mature inner ear. Developmental lineage analyses and gene expression studies suggest that distinct progenitor populations are compartmentalized to discrete axial domains in the early otocyst. Here, we conducted highly parallel quantitative RT-PCR measurements on 382 individual cells from the developing otocyst and neuroblast lineages to assay 96 genes representing established otic markers, signaling-pathway-associated transcripts, and novel otic-specific genes. By applying multivariate cluster, principal component, and network analyses to the data matrix, we were able to readily distinguish the delaminating neuroblasts and to describe progressive states of gene expression in this population at single-cell resolution. It further established a three-dimensional model of the otocyst in which each individual cell can be precisely mapped into spatial expression domains. Our bioinformatic modeling revealed spatial dynamics of different signaling pathways active during early neuroblast development and prosensory domain specification.


Assuntos
Orelha Interna/citologia , Orelha Interna/embriologia , Células-Tronco Neurais/citologia , Análise de Célula Única , Transcriptoma , Animais , Embrião de Mamíferos/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Análise de Componente Principal
3.
Nature ; 592(7853): 237-241, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828316

RESUMO

Magma viscosity strongly controls the style (for example, explosive versus effusive) of a volcanic eruption and thus its hazard potential, but can only be measured during or after an eruption. The identification of precursors indicative of magma viscosity would enable forecasting of the eruption style and the scale of associated hazards1. The unanticipated May 2018 rift intrusion and eruption of Kilauea Volcano, Hawai'i2 displayed exceptional chemical and thermal variability in erupted lavas, leading to unpredictable effusion rates and explosivity. Here, using an integrated analysis of seismicity and magma rheology, we show that the orientation of fault-plane solutions (which indicate a fault's orientation and sense of movement) for earthquakes preceding and accompanying the 2018 eruption indicate a 90-degree local stress-field rotation from background, a phenomenon previously observed only at high-viscosity eruptions3, and never before at Kilauea4-8. Experimentally obtained viscosities for 2018 products and earlier lavas from the Pu'u 'O'o vents tightly constrain the viscosity threshold required for local stress-field reorientation. We argue that rotated fault-plane solutions in earthquake swarms at Kilauea and other volcanoes worldwide provide an early indication that unrest involves magma of heightened viscosity, and thus real-time monitoring of the orientations of fault-plane solutions could provide critical information about the style of an impending eruption. Furthermore, our results provide insight into the fundamental nature of coupled failure and flow in complex multiphase systems.

4.
Mol Syst Biol ; 20(2): 57-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177382

RESUMO

Although clinical applications represent the next challenge in single-cell genomics and digital pathology, we still lack computational methods to analyze single-cell or pathomics data to find sample-level trajectories or clusters associated with diseases. This remains challenging as single-cell/pathomics data are multi-scale, i.e., a sample is represented by clusters of cells/structures, and samples cannot be easily compared with each other. Here we propose PatIent Level analysis with Optimal Transport (PILOT). PILOT uses optimal transport to compute the Wasserstein distance between two individual single-cell samples. This allows us to perform unsupervised analysis at the sample level and uncover trajectories or cellular clusters associated with disease progression. We evaluate PILOT and competing approaches in single-cell genomics or pathomics studies involving various human diseases with up to 600 samples/patients and millions of cells or tissue structures. Our results demonstrate that PILOT detects disease-associated samples from large and complex single-cell or pathomics data. Moreover, PILOT provides a statistical approach to find changes in cell populations, gene expression, and tissue structures related to the trajectories or clusters supporting interpretation of predictions.


Assuntos
Algoritmos , Genômica , Humanos , Análise por Conglomerados , Genômica/métodos
5.
BMC Bioinformatics ; 25(1): 98, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443821

RESUMO

BACKGROUND: Pathomics facilitates automated, reproducible and precise histopathology analysis and morphological phenotyping. Similar to molecular omics, pathomics datasets are high-dimensional, but also face large outlier variability and inherent data missingness, making quick and comprehensible data analysis challenging. To facilitate pathomics data analysis and interpretation as well as support a broad implementation we developed tRigon (Toolbox foR InteGrative (path-)Omics data aNalysis), a Shiny application for fast, comprehensive and reproducible pathomics analysis. RESULTS: tRigon is available via the CRAN repository ( https://cran.r-project.org/web/packages/tRigon ) with its source code available on GitLab ( https://git-ce.rwth-aachen.de/labooratory-ai/trigon ). The tRigon package can be installed locally and its application can be executed from the R console via the command 'tRigon::run_tRigon()'. Alternatively, the application is hosted online and can be accessed at https://labooratory.shinyapps.io/tRigon . We show fast computation of small, medium and large datasets in a low- and high-performance hardware setting, indicating broad applicability of tRigon. CONCLUSIONS: tRigon allows researchers without coding abilities to perform exploratory feature analyses of pathomics and non-pathomics datasets on their own using a variety of hardware.


Assuntos
Aplicativos Móveis , Análise de Dados
6.
Pflugers Arch ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095655

RESUMO

Traditional histopathology, characterized by manual quantifications and assessments, faces challenges such as low-throughput and inter-observer variability that hinder the introduction of precision medicine in pathology diagnostics and research. The advent of digital pathology allowed the introduction of computational pathology, a discipline that leverages computational methods, especially based on deep learning (DL) techniques, to analyze histopathology specimens. A growing body of research shows impressive performances of DL-based models in pathology for a multitude of tasks, such as mutation prediction, large-scale pathomics analyses, or prognosis prediction. New approaches integrate multimodal data sources and increasingly rely on multi-purpose foundation models. This review provides an introductory overview of advancements in computational pathology and discusses their implications for the future of histopathology in research and diagnostics.

7.
Kidney Int ; 106(2): 185-188, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032963

RESUMO

Acute kidney injury is still associated with high morbidity and mortality. Reichardt et al. investigated DNA-binding protein-A (Ybx3) in acute kidney injury induced by ischemia-reperfusion injury and found that mice lacking Ybx3 have altered mitochondrial function and increased antioxidant activity, making them more resistant to ischemia-reperfusion injury-acute kidney injury. The study highlights a new role of the multifaceted protein DNA-binding protein-A, which could be potentially therapeutically exploited.


Assuntos
Injúria Renal Aguda , Células Epiteliais , Túbulos Renais , Traumatismo por Reperfusão , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/etiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Camundongos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Túbulos Renais/citologia , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo
8.
Environ Res ; 246: 118045, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160969

RESUMO

Present study included technological methods that made it possible to synthesize CdO nanoparticles and carry out their qualitative and quantitative diagnostics, confirming the as-prepared CdO nanoparticles (NPs) were spherical and had a size of 25 nm. Then, under the conditions of the model experiment the effect of CdO in macro and nanosized particles on absorption, transformation, and structural and functional changes occurring in cells and tissues of Hordeum vulgare L. (spring barley) during its ontogenesis was analyzed. Different analytical techniques were used to detect the transformation of CdO forms: Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), X-ray fluorescence analysis (XRF), Scanning electron microscopy (SEM-EDXMA and TEM), X-ray diffraction (XRD), and X-ray absorption fine structure, consists of XANES - X-ray absorption near edge structure, and EXAFS - Extended X-ray absorption fine structure. Quantitative differences in the elemental chemical composition of barley root and leaf samples were observed. The predominant root uptake of Cd was revealed. CdO-NPs were found to penetrate deeply into barley plant tissues, where they accumulated and formed new mineral phases such as Cd5(PO4)3Cl and CdSO4 according to XRD analysis. The molecular-structural state of the local Cd environment in plant samples corresponding to Cd-O and Cd-Cd. The toxicity of CdO-NPs was found to significantly affect the morphology of intracellular structures are the main organelles of photosynthesis therefore, destructive changes in them obviously reduce the level of metabolic processes ensuring the growth of plants. This study is an attempt to show results how it is possible to combine some instrumental techniques to characterize and behavior of NPs in complex matrices of living organisms.


Assuntos
Compostos de Cádmio , Hordeum , Nanopartículas Metálicas , Nanopartículas , Hordeum/metabolismo , Cádmio , Óxidos/química , Nanopartículas/toxicidade , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Antibacterianos/farmacologia , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
9.
J Am Soc Nephrol ; 34(9): 1513-1520, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428955

RESUMO

SIGNIFICANCE STATEMENT: We hypothesized that triple therapy with inhibitors of the renin-angiotensin system (RAS), sodium-glucose transporter (SGLT)-2, and the mineralocorticoid receptor (MR) would be superior to dual RAS/SGLT2 blockade in attenuating CKD progression in Col4a3 -deficient mice, a model of Alport syndrome. Late-onset ramipril monotherapy or dual ramipril/empagliflozin therapy attenuated CKD and prolonged overall survival by 2 weeks. Adding the nonsteroidal MR antagonist finerenone extended survival by 4 weeks. Pathomics and RNA sequencing revealed significant protective effects on the tubulointerstitium when adding finerenone to RAS/SGLT2 inhibition. Thus, triple RAS/SGLT2/MR blockade has synergistic effects and might attenuate CKD progression in patients with Alport syndrome and possibly other progressive chronic kidney disorders. BACKGROUND: Dual inhibition of the renin-angiotensin system (RAS) plus sodium-glucose transporter (SGLT)-2 or the mineralocorticoid receptor (MR) demonstrated additive renoprotective effects in large clinical trials. We hypothesized that triple therapy with RAS/SGLT2/MR inhibitors would be superior to dual RAS/SGLT2 blockade in attenuating CKD progression. METHODS: We performed a preclinical randomized controlled trial (PCTE0000266) in Col4a3 -deficient mice with established Alport nephropathy. Treatment was initiated late (age 6 weeks) in mice with elevated serum creatinine and albuminuria and with glomerulosclerosis, interstitial fibrosis, and tubular atrophy. We block-randomized 40 male and 40 female mice to either nil (vehicle) or late-onset food admixes of ramipril monotherapy (10 mg/kg), ramipril plus empagliflozin (30 mg/kg), or ramipril plus empagliflozin plus finerenone (10 mg/kg). Primary end point was mean survival. RESULTS: Mean survival was 63.7±10.0 days (vehicle), 77.3±5.3 days (ramipril), 80.3±11.0 days (dual), and 103.1±20.3 days (triple). Sex did not affect outcome. Histopathology, pathomics, and RNA sequencing revealed that finerenone mainly suppressed the residual interstitial inflammation and fibrosis despite dual RAS/SGLT2 inhibition. CONCLUSION: Experiments in mice suggest that triple RAS/SGLT2/MR blockade may substantially improve renal outcomes in Alport syndrome and possibly other progressive CKDs because of synergistic effects on the glomerular and tubulointerstitial compartments.


Assuntos
Diabetes Mellitus Tipo 2 , Nefrite Hereditária , Insuficiência Renal Crônica , Animais , Feminino , Masculino , Camundongos , Anti-Hipertensivos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fibrose , Proteínas Facilitadoras de Transporte de Glucose/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/uso terapêutico , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Ramipril/uso terapêutico , Receptores de Mineralocorticoides , Insuficiência Renal Crônica/tratamento farmacológico , Sistema Renina-Angiotensina , Sódio , Transportador 2 de Glucose-Sódio/farmacologia , Transportador 2 de Glucose-Sódio/uso terapêutico
10.
Amino Acids ; 55(10): 1447-1454, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37755529

RESUMO

Plasma amino acid levels are altered upon many pathological conditions including acute pancreatitis. It is unclear whether amino acids can be used as specific biomarker of acute pancreatitis severity or recovery. Development of acute pancreatitis is associated with mitochondrial dysfunction and decreased cytosolic ATP level. Sodium pyruvate is considered as a potential treatment of pancreatitis due to its ability to sustain mitochondrial oxidative and ATP-productive capacity in vitro. This study investigated the effect of sodium pyruvate on pancreatic morphology and plasma amino acid levels in rats with acute pancreatitis. Acute pancreatitis in rats was induced by administration of L-arginine (5 g/kg) Experimental treatment group received sodium pyruvate (1 g/kg) for 4 days. On day 8 of the experiment, animals were killed, blood was collected and plasma amino acid concentration was determined with high-performance liquid chromatography. Histological examination showed large areas of fibrosis in the pancreas of animals treated with L-arginine irrespectively of sodium pyruvate administration. Sodium pyruvate improved the plasma amino acid levels. Rats with acute pancreatitis had significantly lower levels of most essential and non-essential amino acids and increased glutamate and aspartate in plasma. Administration of sodium pyruvate completely or partially restored the levels of methionine, phenylalanine, tryptophan, leucine, isoleucine, aspartate, asparagine and ornithine levels, while increasing glutamine and serine to levels significantly higher than control. Plasma lysine, alanine, arginine and taurine remained unaffected in all experimental groups. Sodium pyruvate may be considered for use as a maintenance therapy in acute pancreatitis.


Assuntos
Ácido Aspártico , Pancreatite , Ratos , Animais , Doença Aguda , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Aminoácidos/metabolismo , Arginina/metabolismo , Piruvatos/farmacologia , Sódio , Trifosfato de Adenosina
11.
Inorg Chem ; 62(26): 10369-10381, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37348001

RESUMO

Doping of nano- and microparticles of oxides with rare earth elements (REEs) is used to fine-tune their structural, optical, and electrochemical properties. On the way to establish the structure-property relationship, we dope tantalum oxide (Ta2O5) particles with REEs to study their effect on the oxide structure and luminescence. Ta2O5 is highly perspective in medicine, catalysis, and optics, but its crystal structure is insufficiently studied. Two synthesis approaches (sol-gel and solvothermal) were used to obtain powders with different textures. Experimental and theoretical studies of amorphous and crystallized tantalum oxide NPs by means of X-ray powder diffraction, Rietveld analysis, EXAFS/XANES spectroscopy, and density functional theory calculations were performed. All samples (doped and undoped) crystallized in orthorhombic phase with no admixtures. It was demonstrated that Ta2O5 is a promising wide-spectrum luminescent material: by combining REEs, both Stokes and anti-Stokes luminescence in the visible region were obtained. By means of optical absorption spectroscopy, it was shown that the prepared samples could be classified as wide band gap semiconductors.

12.
Transpl Int ; 36: 11783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908675

RESUMO

The Banff Digital Pathology Working Group (DPWG) was established with the goal to establish a digital pathology repository; develop, validate, and share models for image analysis; and foster collaborations using regular videoconferencing. During the calls, a variety of artificial intelligence (AI)-based support systems for transplantation pathology were presented. Potential collaborations in a competition/trial on AI applied to kidney transplant specimens, including the DIAGGRAFT challenge (staining of biopsies at multiple institutions, pathologists' visual assessment, and development and validation of new and pre-existing Banff scoring algorithms), were also discussed. To determine the next steps, a survey was conducted, primarily focusing on the feasibility of establishing a digital pathology repository and identifying potential hosts. Sixteen of the 35 respondents (46%) had access to a server hosting a digital pathology repository, with 2 respondents that could serve as a potential host at no cost to the DPWG. The 16 digital pathology repositories collected specimens from various organs, with the largest constituent being kidney (n = 12,870 specimens). A DPWG pilot digital pathology repository was established, and there are plans for a competition/trial with the DIAGGRAFT project. Utilizing existing resources and previously established models, the Banff DPWG is establishing new resources for the Banff community.


Assuntos
Inteligência Artificial , Transplante de Rim , Humanos , Algoritmos , Rim/patologia
13.
Curr Opin Nephrol Hypertens ; 31(3): 251-257, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165248

RESUMO

PURPOSE OF REVIEW: The field of pathology is currently undergoing a significant transformation from traditional glass slides to a digital format dependent on whole slide imaging. Transitioning from glass to digital has opened the field to development and application of image analysis technology, commonly deep learning methods (artificial intelligence [AI]) to assist pathologists with tissue examination. Nephropathology is poised to leverage this technology to improve precision, accuracy, and efficiency in clinical practice. RECENT FINDINGS: Through a multidisciplinary approach, nephropathologists, and computer scientists have made significant recent advances in developing AI technology to identify histological structures within whole slide images (segmentation), quantification of histologic structures, prediction of clinical outcomes, and classifying disease. Virtual staining of tissue and automation of electron microscopy imaging are emerging applications with particular significance for nephropathology. SUMMARY: AI applied to image analysis in nephropathology has potential to transform the field by improving diagnostic accuracy and reproducibility, efficiency, and prognostic power. Reimbursement, demonstration of clinical utility, and seamless workflow integration are essential to widespread adoption.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador , Computadores , Humanos , Rim/diagnóstico por imagem , Reprodutibilidade dos Testes
14.
Addict Biol ; 27(2): e13158, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229955

RESUMO

Our aim was to assess the cognitive and emotional state, as well as related-changes in the glucocorticoid receptor (GR), the corticotropin-releasing factor (CRF) and the brain-derived neurotrophic factor (BDNF) expression of adolescent C57BL/6J male mice after a 5-week two-bottle choice protocol (postnatal day [pd]21 to pd52). Additionally, we wanted to analyse whether the behavioural and neurobiological effects observed in late adolescence (pd62) lasted until adulthood (pd84). Behavioural testing revealed that alcohol during early adolescence increased anxiety-like and compulsive-related behaviours, which was maintained in adulthood. Concerning cognition, working memory was only altered in late adolescent mice, whereas object location test performance was impaired in both ages. In contrast, novel object recognition remained unaltered. Immunohistochemical analysis showed that alcohol during adolescence diminished BDNF+ cells in the cingulate cortex, the hippocampal CA1 layer and the central amygdala. Regarding hypothalamic-pituitary-adrenal axis (HPA) functioning, alcohol abuse increased the GR and CRF expression in the hypothalamic paraventricular nucleus and the central amygdala. Besides this, GR density was also higher in the prelimbic cortex and the basolateral amygdala, regardless of the animals' age. Our findings suggest that adolescent alcohol exposure led to long-term behavioural alterations, along with changes in BDNF, GR and CRF expression in limbic brain areas involved in stress response, emotional regulation and cognition.


Assuntos
Hormônio Liberador da Corticotropina , Sistema Hipotálamo-Hipofisário , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo
15.
J Am Soc Nephrol ; 32(1): 52-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33154175

RESUMO

BACKGROUND: Nephropathologic analyses provide important outcomes-related data in experiments with the animal models that are essential for understanding kidney disease pathophysiology. Precision medicine increases the demand for quantitative, unbiased, reproducible, and efficient histopathologic analyses, which will require novel high-throughput tools. A deep learning technique, the convolutional neural network, is increasingly applied in pathology because of its high performance in tasks like histology segmentation. METHODS: We investigated use of a convolutional neural network architecture for accurate segmentation of periodic acid-Schiff-stained kidney tissue from healthy mice and five murine disease models and from other species used in preclinical research. We trained the convolutional neural network to segment six major renal structures: glomerular tuft, glomerulus including Bowman's capsule, tubules, arteries, arterial lumina, and veins. To achieve high accuracy, we performed a large number of expert-based annotations, 72,722 in total. RESULTS: Multiclass segmentation performance was very high in all disease models. The convolutional neural network allowed high-throughput and large-scale, quantitative and comparative analyses of various models. In disease models, computational feature extraction revealed interstitial expansion, tubular dilation and atrophy, and glomerular size variability. Validation showed a high correlation of findings with current standard morphometric analysis. The convolutional neural network also showed high performance in other species used in research-including rats, pigs, bears, and marmosets-as well as in humans, providing a translational bridge between preclinical and clinical studies. CONCLUSIONS: We developed a deep learning algorithm for accurate multiclass segmentation of digital whole-slide images of periodic acid-Schiff-stained kidneys from various species and renal disease models. This enables reproducible quantitative histopathologic analyses in preclinical models that also might be applicable to clinical studies.


Assuntos
Aprendizado Profundo , Diagnóstico por Computador , Rim/fisiopatologia , Reconhecimento Automatizado de Padrão , Algoritmos , Animais , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador/métodos , Nefropatias/patologia , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Redes Neurais de Computação , Ácido Periódico/química , Reprodutibilidade dos Testes , Bases de Schiff , Pesquisa Translacional Biomédica
16.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055068

RESUMO

BACKGROUND: Polycystic kidney disease (PKD) is a genetic disorder affecting millions of people worldwide that is characterized by fluid-filled cysts and leads to end-stage renal disease (ESRD). The hallmarks of PKD are proliferation and dedifferentiation of tubular epithelial cells, cellular processes known to be regulated by Notch signaling. METHODS: We found increased Notch3 expression in human PKD and renal cell carcinoma biopsies. To obtain insight into the underlying mechanisms and the functional consequences of this abnormal expression, we developed a transgenic mouse model with conditional overexpression of the intracellular Notch3 (ICN3) domain specifically in renal tubules. We evaluated the alterations in renal function (creatininemia, BUN) and structure (cysts, fibrosis, inflammation) and measured the expression of several genes involved in Notch signaling and the mechanisms of inflammation, proliferation, dedifferentiation, fibrosis, injury, apoptosis and regeneration. RESULTS: After one month of ICN3 overexpression, kidneys were larger with tubules grossly enlarged in diameter, with cell hypertrophy and hyperplasia, exclusively in the outer stripe of the outer medulla. After three months, mice developed numerous cysts in proximal and distal tubules. The cysts had variable sizes and were lined with a single- or multilayered, flattened, cuboid or columnar epithelium. This resulted in epithelial hyperplasia, which was observed as protrusions into the cystic lumen in some of the renal cysts. The pre-cystic and cystic epithelium showed increased expression of cytoskeletal filaments and markers of epithelial injury and dedifferentiation. Additionally, the epithelium showed increased proliferation with an aberrant orientation of the mitotic spindle. These phenotypic tubular alterations led to progressive interstitial inflammation and fibrosis. CONCLUSIONS: In summary, Notch3 signaling promoted tubular cell proliferation, the alignment of cell division, dedifferentiation and hyperplasia, leading to cystic kidney diseases and pre-neoplastic lesions.


Assuntos
Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Doenças Renais Policísticas/etiologia , Doenças Renais Policísticas/metabolismo , Receptor Notch3/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Epiteliais/patologia , Fibrose , Expressão Gênica , Imuno-Histoquímica , Neoplasias Renais/etiologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Túbulos Renais/patologia , Camundongos , Doenças Renais Policísticas/patologia , Receptor Notch3/genética
17.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012579

RESUMO

Acute lung injury (ALI) as a model of acute respiratory distress syndrome is characterized by inflammation, complex coagulation, and hematologic abnormalities which result in the formation of fibrin-platelet microthrombi in the pulmonary vessels with the rapid development of progressive respiratory dysfunction. We hypothesize that a nebulized fibrinolytic agent, non-immunogenic staphylokinase (nSta), may be useful for ALI therapy. First, the effect of the nebulized nSta (0.2 mg/kg, 1.0 mg/kg, or 2.0 mg/kg) on the coagulogram parameters was studied in healthy rats. ALI was induced in mice by nebulized administration of lipopolysaccharide (LPS) at a dose of 10 mg/kg. nSta (0.2 mg/kg, 0.4 mg/kg or 0.6 mg/kg) was nebulized 30 min, 24 h, and 48 h after LPS administration. The level of pro-inflammatory cytokines was determined in the blood on the 8th day after LPS and nSta administration. The assessment of lung damage was based on their weighing and microscopic analysis. Fibrin/fibrinogen deposition in the lungs was determined by immunohistochemistry. After nSta nebulization in healthy rats, the fibrinogen blood level as well as activated partial thromboplastin time and prothrombin time did not change. In the nebulized ALI model, the mice showed an increase in lung weight due to their edema and rising fibrin deposition. An imbalance of proinflammatory cytokines was also found. Forty percent of mice with ALI without nSta nebulization had died. Nebulized nSta at a dose of 0.2 mg/kg reduced the severity of ALI: a decrease in interstitial edema and inflammatory infiltration was noted. At a dose of 0.4 mg/kg of nebulized nSta, the animals showed no peribronchial edema and the bronchi had an open clear lumen. At a dose of 0.6 mg/kg of nebulized nSta, the manifestations of ALI were completely eliminated. A significant dose-dependent reduction of the fibrin-positive areas in the lungs of mice with ALI was established. Nebulized nSta had a normalizing effect on the proinflammatory cytokines in blood- interleukin (IL)-1α, IL-17A, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). These data showed the effectiveness of nebulized nSta and the perspectives of its clinical usage in COVID-19 patients with acute respiratory distress syndrome (ARDS).


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Modelos Animais de Doenças , Fibrina/farmacologia , Fibrinogênio/uso terapêutico , Lipopolissacarídeos/toxicidade , Pulmão , Metaloendopeptidases , Camundongos , Ratos , Síndrome do Desconforto Respiratório/tratamento farmacológico
18.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408778

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common clinical problem, leading to significant morbidity and mortality, and no effective pharmacotherapy exists. The problem of ARDS causing mortality became more apparent during the COVID-19 pandemic. Biotherapeutic products containing multipotent mesenchymal stromal cell (MMSC) secretome may provide a new therapeutic paradigm for human healthcare due to their immunomodulating and regenerative abilities. The content and regenerative capacity of the secretome depends on cell origin and type of cultivation (two- or three-dimensional (2D/3D)). In this study, we investigated the proteomic profile of the secretome from 2D- and 3D-cultured placental MMSC and lung fibroblasts (LFBs) and the effect of inhalation of freeze-dried secretome on survival, lung inflammation, lung tissue regeneration, fibrin deposition in a lethal ALI model in mice. We found that three inhaled administrations of freeze-dried secretome from 2D- and 3D-cultured placental MMSC and LFB protected mice from death, restored the histological structure of damaged lungs, and decreased fibrin deposition. At the same time, 3D MMSC secretome exhibited a more pronounced trend in lung recovery than 2D MMSC and LFB-derived secretome in some measures. Taking together, these studies show that inhalation of cell secretome may also be considered as a potential therapy for the management of ARDS in patients suffering from severe pneumonia, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, their effectiveness requires further investigation.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pneumonia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/terapia , Animais , COVID-19/terapia , Técnicas de Cultura de Células , Feminino , Fibrina , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Pandemias , Placenta , Gravidez , Proteômica , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2 , Secretoma
19.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613658

RESUMO

A new 1D-coordination polymer [Co(Piv)2(NH2(CH2)6NH2)]n (1, Piv is Me3CCO2- anion) was obtained, the mononuclear fragments {Co(O2CR)2} within which are linked by µ-bridged molecules of hexamethylenediamine (NH2(CH2)6NH2). For this compound, two different monoclinic C2/c (α-1) and P2/n (ß-1) phases were found at room temperature by single-crystal X-ray diffraction analysis, with a similar structure of chains and their packages in unit cells. The low-temperature phase (γ-1) of crystal 1 at 150 K corresponds to the triclinic space group P-1. As the temperature decreases, the structural phase transition (SPT) in the α-1 and ß-1 crystals is accompanied by an increase in the crystal packing density caused by the rearrangements of both H-bonds and the nearest ligand environment of the cobalt atom ("octahedral CoN2O4 around the metal center at room temperature" → "pseudo-tetrahedral CoN2O2 at 150 K"). The SPT was confirmed by DSC in the temperature range 210-150 K; when heated above 220 K, anomalies in the behavior of the heat flow are observed, which may be associated with the reversibility of SPT; endo effects are observed up to 300 K. The SPT starts below 200 K. At 100 K, a mixture of phases was found in sample 1: 27% α-1 phase, 61% γ-1 phase. In addition, at 100 K, 12% of the new δ-1 phase was detected, which was identified from the diffraction pattern at 260 K upon subsequent heating: the a,b,c-parameters and unit cell volume are close to the structure parameters of γ-1, and the values of the α,ß,γ-angles are significantly different. Further heating leads to a phase transition from δ-1 to α-1, which both coexist at room temperature. According to the DC magnetometry data, during cooling and heating, the χMT(T) curves for 1 form a hysteresis loop with ~110 K, in which the difference in the χMT values reaches 9%. Ab initio calculations of the electronic structure of cobalt(II) in α-1 and γ-1 have been performed. Based on the EPR data at 10 K and the ab initio calculations, the behavior of the χMT(T) curve for 1 was simulated in the temperature range of 2-150 K. It was found that 1 exhibits slow magnetic relaxation in a field of 1000 Oe.


Assuntos
Cobalto , Temperatura Baixa , Cobalto/química , Cristalografia por Raios X , Transição de Fase
20.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296548

RESUMO

Five random copolymers comprising styrene and styrene with pendant fluorophore moieties, namely pyrene, naphthalene, phenanthrene, and triphenylamine, in molar ratios of 10:1, were synthesized and employed as fluorescent sensors. Their photophysical properties were investigated using absorption and emission spectral analyses in dichloromethane solution and in solid state. All copolymers possessed relative quantum yields up to 0.3 in solution and absolute quantum yields up to 0.93 in solid state, depending on their fluorophore components. Fluorescence studies showed that the emission of these copolymers is highly sensitive towards various nitroaromatic compounds, both in solution and in the vapor phase. The detection limits of these fluorophores for nitroaromatic compounds in dichloromethane solution proved to be in the range of 10-6 to 10-7 mol/L. The sensor materials for new hand-made sniffers based on these fluorophores were prepared by electrospinning and applied for the reliable detection of nitrobenzene vapors at 1 ppm in less than 5 min.


Assuntos
Fenantrenos , Estireno , Cloreto de Metileno , Pirenos , Corantes Fluorescentes , Nitrobenzenos/análise , Polímeros , Naftalenos , Ionóforos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA