Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant Cell ; 32(7): 2383-2401, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358071

RESUMO

The tradeoff between protein and oil storage in oilseed crops has been tested here in oilseed rape (Brassica napus) by analyzing the effect of suppressing key genes encoding protein storage products (napin and cruciferin). The phenotypic outcomes were assessed using NMR and mass spectrometry imaging, microscopy, transcriptomics, proteomics, metabolomics, lipidomics, immunological assays, and flux balance analysis. Surprisingly, the profile of storage products was only moderately changed in RNA interference transgenics. However, embryonic cells had undergone remarkable architectural rearrangements. The suppression of storage proteins led to the elaboration of membrane stacks enriched with oleosin (sixfold higher protein abundance) and novel endoplasmic reticulum morphology. Protein rebalancing and amino acid metabolism were focal points of the metabolic adjustments to maintain embryonic carbon/nitrogen homeostasis. Flux balance analysis indicated a rather minor additional demand for cofactors (ATP and NADPH). Thus, cellular plasticity in seeds protects against perturbations to its storage capabilities and, hence, contributes materially to homeostasis. This study provides mechanistic insights into the intriguing link between lipid and protein storage, which have implications for biotechnological strategies directed at improving oilseed crops.


Assuntos
Brassica napus/citologia , Brassica napus/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/citologia , Sementes/metabolismo , Albuminas 2S de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Aminoácidos/metabolismo , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Brassica napus/genética , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Nitrogênio/metabolismo , Células Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Proteínas de Armazenamento de Sementes/genética
2.
J Nutr ; 153(12): 3397-3405, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37898335

RESUMO

BACKGROUND: Regulation of mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in aging and nutrition. For example, caloric restriction reduces mTORC1 signaling and extends lifespan, whereas nutrient abundance and obesity increase mTORC1 signaling and reduce lifespan. Skeletal muscle-specific knockout (KO) of DEP domain-containing 5 protein (DEPDC5) results in constitutively active mTORC1 signaling, muscle hypertrophy and an increase in mitochondrial respiratory capacity. The metabolic profile of skeletal muscle, in the setting of hyperactive mTORC1 signaling, is not well known. OBJECTIVES: To determine the metabolomic and lipidomic signature in skeletal muscle from female and male wild-type (WT) and DEPDC5 KO mice. METHODS: Tibialis anterior (TA) muscles from WT and transgenic (conditional skeletal muscle-specific DEPDC5 KO) were obtained from female and male adult mice. Polar metabolites and lipids were extracted using a Bligh-Dyer extraction from 5 samples per group and identified and quantified by LC-MS/MS. Resulting analyte peak areas were analyzed with t-test, analysis of variance, and Volcano plots for group comparisons (e.g., WT compared with KO) and multivariate statistical analysis for genotype and sex comparisons. RESULTS: A total of 162 polar metabolites (organic acids, amino acids, and amines and acyl carnitines) and 1141 lipid metabolites were detected in TA samples by LC-MS/MS. Few polar metabolites showed significant differences in KO muscles compared with WT within the same sex group. P-aminobenzoic acid, ß-alanine, and dopamine were significantly higher in KO male muscle whereas erythrose-4-phosphate and oxoglutaric acid were significantly reduced in KO females. The lipidomic profile of the KO groups revealed an increase of muscle phospholipids and reduced triacylglycerol and diacylglycerol compared with the WT groups. CONCLUSIONS: Sex differences were detected in polar metabolome and lipids were dependent on genotype. The metabolomic profile of mice with hyperactive skeletal muscle mTORC1 is consistent with an upregulation of mitochondrial function and amino acid utilization for protein synthesis.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Feminino , Masculino , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Cromatografia Líquida , Músculo Esquelético/metabolismo , Camundongos Knockout , Lipídeos
3.
Biochem J ; 479(6): 805-823, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35298586

RESUMO

The regulation of lipid metabolism in oil seeds is still not fully understood and increasing our knowledge in this regard is of great economic, as well as intellectual, importance. Oilseed rape (Brassica napus) is a major global oil crop where increases in triacylglycerol (TAG) accumulation have been achieved by overexpression of relevant biosynthetic enzymes. In this study, we expressed Arabidopsis phospholipid: diacylglycerol acyltransferase (PDAT1), one of the two major TAG-forming plant enzymes in B. napus DH12075 to evaluate its effect on lipid metabolism in developing seeds and to estimate its flux control coefficient. Despite several-fold increase in PDAT activity, seeds of three independently generated PDAT transgenic events showed a small but consistent decrease in seed oil content and had altered fatty acid composition of phosphoglycerides and TAG, towards less unsaturation. Mass spectrometry imaging of seed sections confirmed the shift in lipid compositions and indicated that PDAT overexpression altered the distinct heterogeneous distributions of phosphatidylcholine (PC) molecular species. Similar, but less pronounced, changes in TAG molecular species distributions were observed. Our data indicate that PDAT exerts a small, negative, flux control on TAG biosynthesis and could have under-appreciated effects in fine-tuning of B. napus seed lipid composition in a tissue-specific manner. This has important implications for efforts to increase oil accumulation in similar crops.


Assuntos
Brassica napus , Brassica napus/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Sementes/metabolismo
4.
Plant Physiol ; 185(4): 1847-1859, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793933

RESUMO

In legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. As in the previous studies, in P deficiency, barrel medic (Medicago truncatula) plants had impaired SNF activity, reduced growth, and accumulated less phosphate in leaves, roots, and nodules compared with the plants grown in P sufficient conditions. Membrane lipids in M. truncatula tissues were assessed using electrospray ionization-mass spectrometry. Galactolipids were found to increase in P deficiency, with declines in phospholipids (PL), especially in leaves. Lower PL losses were found in roots and nodules. Subsequently, matrix-assisted laser desorption/ionization-mass spectrometry imaging was used to spatially map the distribution of the positively charged phosphatidylcholine (PC) species in nodules in both P-replete and P-deficient conditions. Our results reveal heterogeneous distribution of several PC species in nodules, with homogeneous distribution of other PC classes. In P poor conditions, some PC species distributions were observed to change. The results suggest that specific PC species may be differentially important in diverse nodule zones and cell types, and that membrane lipid remodeling during P stress is not uniform across the nodule.


Assuntos
Medicago truncatula/metabolismo , Lipídeos de Membrana/metabolismo , Fixação de Nitrogênio/fisiologia , Fósforo/deficiência , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Simbiose/fisiologia , Produtos Agrícolas/química , Produtos Agrícolas/microbiologia , Interações Hospedeiro-Patógeno , Medicago truncatula/microbiologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Nódulos Radiculares de Plantas/química , Nódulos Radiculares de Plantas/microbiologia
5.
Plant Biotechnol J ; 19(6): 1268-1282, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33492748

RESUMO

Upland cotton (Gossypium hirsutum L.) is an economically important multi-purpose crop cultivated globally for fibre, seed oil and protein. Cottonseed oil also is naturally rich in vitamin E components (collectively known as tocochromanols), with α- and γ-tocopherols comprising nearly all of the vitamin E components. By contrast, cottonseeds have little or no tocotrienols, tocochromanols with a wide range of health benefits. Here, we generated transgenic cotton lines expressing the barley (Hordeum vulgare) homogentisate geranylgeranyl transferase coding sequence under the control of the Brassica napus seed-specific promoter, napin. Transgenic cottonseeds had ~twofold to threefold increases in the accumulation of total vitamin E (tocopherols + tocotrienols), with more than 60% γ-tocotrienol. Matrix assisted laser desorption ionization-mass spectrometry imaging showed that γ-tocotrienol was localized throughout the transgenic embryos. In contrast, the native tocopherols were distributed unequally in both transgenic and non-transgenic embryos. α- Tocopherol was restricted mostly to cotyledon tissues and γ-tocopherol was more enriched in the embryonic axis tissues. Production of tocotrienols in cotton embryos had no negative impact on plant performance or yield of other important seed constituents including fibre, oil and protein. Advanced generations of two transgenic events were field grown, and extracts of transgenic seeds showed increased antioxidant activity relative to extracts from non-transgenic seeds. Furthermore, refined cottonseed oil from the two transgenic events showed 30% improvement in oxidative stability relative to the non-transgenic cottonseed oil. Taken together, these materials may provide new opportunities for cottonseed co-products with enhanced vitamin E profile for improved shelf life and nutrition.


Assuntos
Gossypium , Tocotrienóis , Suplementos Nutricionais , Gossypium/genética , Estresse Oxidativo , Sementes , Tocoferóis
6.
Metabolomics ; 15(1): 6, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30830477

RESUMO

INTRODUCTION: Castor (Ricinus communis L.) seeds are valued for their production of oils which can comprise up to 90% hydroxy-fatty acids (ricinoleic acid). Castor oil contains mono-, di- and tri- ricinoleic acid containing triacylglycerols (TAGs). Although the enzymatic synthesis of ricinoleic acid is well described, the differential compartmentalization of these TAG molecular species has remained undefined. OBJECTIVES: To examine the distribution of hydroxy fatty acid accumulation within the endosperm and embryo tissues of castor seeds. METHODS: Matrix assisted laser desorption/ionization mass spectrometry imaging was used to map the distribution of triacylglycerols in tissue sections of castor seeds. In addition, the endosperm and embryo (cotyledons and embryonic axis) tissues were dissected and extracted for quantitative lipidomics analysis and Illumina-based RNA deep sequencing. RESULTS: This study revealed an unexpected heterogeneous tissue distribution of mono-, di- and tri- hydroxy-triacylglycerols in the embryo and endosperm tissues of castor seeds. Pathway analysis based on transcript abundance suggested that distinct embryo- and endosperm-specific mechanisms may exist for the shuttling of ricinoleic acid away from phosphatidylcholine (PC) and into hydroxy TAG production. The embryo-biased mechanism appears to favor removal of ricinoleic acid from PC through phophatidylcholine: diacylglycerol acyltransferase while the endosperm pathway appears to remove ricinoleic acid from the PC pool by preferences of phospholipase A (PLA2α) and/or phosphatidylcholine: diacylglycerol cholinephosphotransferase. CONCLUSIONS: Collectively, a combination of lipidomics and transcriptomics analyses revealed previously undefined spatial aspects of hydroxy fatty acid metabolism in castor seeds. These studies underscore a need for tissue-specific studies as a means to better understand the regulation of triacylglycerol accumulation in oilseeds.


Assuntos
Ácidos Ricinoleicos/metabolismo , Ricinus/metabolismo , Ricinus communis/metabolismo , Óleo de Rícino/metabolismo , Diacilglicerol Colinofosfotransferase , Ácidos Graxos/metabolismo , Fosfolipases A2 do Grupo IV , Fosfatidilcolinas , Ácidos Ricinoleicos/análise , Ricinus/química , Ricinus/genética , Sementes/química , Sementes/metabolismo , Análise de Sequência de RNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triglicerídeos/metabolismo
7.
Front Plant Sci ; 13: 1038161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438089

RESUMO

The lipidome comprises the total content of molecular species of each lipid class, and is measured using the analytical techniques of lipidomics. Many liquid chromatography-mass spectrometry (LC-MS) methods have previously been described to characterize the lipidome. However, many lipidomic approaches may not fully uncover the subtleties of lipid molecular species, such as the full fatty acid (FA) composition of certain lipid classes. Here, we describe a stepwise targeted lipidomics approach to characterize the polar and non-polar lipid classes using complementary LC-MS methods. Our "polar" method measures 260 molecular species across 12 polar lipid classes, and is performed using hydrophilic interaction chromatography (HILIC) on a NH2 column to separate lipid classes by their headgroup. Our "non-polar" method measures 254 molecular species across three non-polar lipid classes, separating molecular species on their FA characteristics by reverse phase (RP) chromatography on a C30 column. Five different extraction methods were compared, with an MTBE-based extraction chosen for the final lipidomics workflow. A state-of-the-art strategy to determine and relatively quantify the FA composition of triacylglycerols is also described. This lipidomics workflow was applied to developing, mature, and germinated pennycress seeds/seedlings and found unexpected changes among several lipid molecular species. During development, diacylglycerols predominantly contained long chain length FAs, which contrasted with the very long chain FAs of triacylglycerols in mature seeds. Potential metabolic explanations are discussed. The lack of very long chain fatty acids in diacylglycerols of germinating seeds may indicate very long chain FAs, such as erucic acid, are preferentially channeled into beta-oxidation for energy production.

8.
Front Plant Sci ; 13: 943585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909773

RESUMO

Pennycress is a potentially lucrative biofuel crop due to its high content of long-chain unsaturated fatty acids, and because it uses non-conventional pathways to achieve efficient oil production. However, metabolic engineering is required to improve pennycress oilseed content and make it an economically viable source of aviation fuel. Research is warranted to determine if further upregulation of these non-conventional pathways could improve oil production within the species even more, which would indicate these processes serve as promising metabolic engineering targets and could provide the improvement necessary for economic feasibility of this crop. To test this hypothesis, we performed a comparative biomass, metabolomic, and transcriptomic analyses between a high oil accession (HO) and low oil accession (LO) of pennycress to assess potential factors required to optimize oil content. An evident reduction in glycolysis intermediates, improved oxidative pentose phosphate pathway activity, malate accumulation in the tricarboxylic acid cycle, and an anaplerotic pathway upregulation were noted in the HO genotype. Additionally, higher levels of threonine aldolase transcripts imply a pyruvate bypass mechanism for acetyl-CoA production. Nucleotide sugar and ascorbate accumulation also were evident in HO, suggesting differential fate of associated carbon between the two genotypes. An altered transcriptome related to lipid droplet (LD) biosynthesis and stability suggests a contribution to a more tightly-packed LD arrangement in HO cotyledons. In addition to the importance of central carbon metabolism augmentation, alternative routes of carbon entry into fatty acid synthesis and modification, as well as transcriptionally modified changes in LD regulation, are key aspects of metabolism and storage associated with economically favorable phenotypes of the species.

9.
Sci Rep ; 12(1): 3352, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233071

RESUMO

Oilseed rape (Brassica napus) is an important crop that is cultivated for the oil (mainly triacylglycerol; TAG) it produces in its seeds. TAG synthesis is controlled mainly by key enzymes in the Kennedy pathway, such as glycerol 3-phosphate acyltransferase (GPAT), lysophosphatidate acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) but can also be produced from phosphoglycerides such as phosphatidylcholine (PC) by the activity of the enzyme phospholipid: diacylglycerol acyltransferase (PDAT). To evaluate the potential for these enzymes to alter oil yields or composition, we analysed transgenic B. napus lines which overexpressed GPAT, LPAT or PDAT using heterologous transgenes from Arabidopsis and Nasturtium and examined lipid profiles and changes in gene expression in these lines compared to WT. Distinct changes in PC and TAG abundance and spatial distribution in embryonic tissues were observed in some of the transgenic lines, together with altered expression of genes involved generally in acyl-lipid metabolism. Overall our results show that up-regulation of these key enzymes differentially affects lipid composition and distribution as well as lipid-associated gene expression, providing important information which could be used to improve crop properties by metabolic engineering.


Assuntos
Arabidopsis , Brassica napus , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Expressão Gênica , Metabolismo dos Lipídeos/genética , Sementes/genética , Sementes/metabolismo , Triglicerídeos/metabolismo
10.
Methods Mol Biol ; 2295: 417-438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34047991

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has emerged as a major analytical platform for the determination and localization of lipid metabolites directly from tissue sections. Unlike analysis of lipid extracts, where lipid localizations are lost due to homogenization and/ or solvent extraction, MALDI-MSI analysis is capable of revealing spatial localization of metabolites while simultaneously collecting high chemical resolution mass spectra. Important considerations for obtaining high quality MALDI-MS images include tissue preservation, section preparation, MS data collection and data processing. Errors in any of these steps can lead to poor quality metabolite images and increases the chance for metabolite misidentification and/ or incorrect localization. Here, we present detailed methods and recommendations for specimen preparation, MALDI-MS instrument parameters, software analysis platforms for data processing, and practical considerations for each of these steps to ensure acquisition of high-quality chemical and spatial resolution data for reconstructing MALDI-MS images of plant tissues.


Assuntos
Lipídeos/química , Plantas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Diagnóstico por Imagem/métodos , Técnicas Histológicas/métodos , Processamento de Imagem Assistida por Computador/métodos , Metabolismo dos Lipídeos/fisiologia , Plantas/metabolismo , Software
11.
Metabolites ; 11(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806402

RESUMO

The combination of 13C-isotopic labeling and mass spectrometry imaging (MSI) offers an approach to analyze metabolic flux in situ. However, combining isotopic labeling and MSI presents technical challenges ranging from sample preparation, label incorporation, data collection, and analysis. Isotopic labeling and MSI individually create large, complex data sets, and this is compounded when both methods are combined. Therefore, analyzing isotopically labeled MSI data requires streamlined procedures to support biologically meaningful interpretations. Using currently available software and techniques, here we describe a workflow to analyze 13C-labeled isotopologues of the membrane lipid and storage oil lipid intermediate-phosphatidylcholine (PC). Our results with embryos of the oilseed crops, Camelina sativa and Thlaspi arvense (pennycress), demonstrated greater 13C-isotopic labeling in the cotyledons of developing embryos compared with the embryonic axis. Greater isotopic enrichment in PC molecular species with more saturated and longer chain fatty acids suggest different flux patterns related to fatty acid desaturation and elongation pathways. The ability to evaluate MSI data of isotopically labeled plant embryos will facilitate the potential to investigate spatial aspects of metabolic flux in situ.

12.
Front Plant Sci ; 12: 652319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968108

RESUMO

Pennycress (Thlaspi arvense L.) is being domesticated as an oilseed cash cover crop to be grown in the off-season throughout temperate regions of the world. With its diploid genome and ease of directed mutagenesis using molecular approaches, pennycress seed oil composition can be rapidly tailored for a plethora of food, feed, oleochemical and fuel uses. Here, we utilized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology to produce knockout mutations in the FATTY ACID DESATURASE2 (FAD2) and REDUCED OLEATE DESATURATION1 (ROD1) genes to increase oleic acid content. High oleic acid (18:1) oil is valued for its oxidative stability that is superior to the polyunsaturated fatty acids (PUFAs) linoleic (18:2) and linolenic (18:3), and better cold flow properties than the very long chain fatty acid (VLCFA) erucic (22:1). When combined with a FATTY ACID ELONGATION1 (fae1) knockout mutation, fad2 fae1 and rod1 fae1 double mutants produced ∼90% and ∼60% oleic acid in seed oil, respectively, with PUFAs in fad2 fae1 as well as fad2 single mutants reduced to less than 5%. MALDI-MS spatial imaging analyses of phosphatidylcholine (PC) and triacylglycerol (TAG) molecular species in wild-type pennycress embryo sections from mature seeds revealed that erucic acid is highly enriched in cotyledons which serve as storage organs, suggestive of a role in providing energy for the germinating seedling. In contrast, PUFA-containing TAGs are enriched in the embryonic axis, which may be utilized for cellular membrane expansion during seed germination and seedling emergence. Under standard growth chamber conditions, rod1 fae1 plants grew like wild type whereas fad2 single and fad2 fae1 double mutant plants exhibited delayed growth and overall reduced heights and seed yields, suggesting that reducing PUFAs below a threshold in pennycress had negative physiological effects. Taken together, our results suggest that combinatorial knockout of ROD1 and FAE1 may be a viable route to commercially increase oleic acid content in pennycress seed oil whereas mutations in FAD2 will likely require at least partial function to avoid fitness trade-offs.

13.
Sci Rep ; 9(1): 11711, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406215

RESUMO

Design of environmentally friendly lubricants derived from renewable resources is highly desirable for many practical applications. Here, Orychophragmus violaceus (Ov) seed oil is found to have superior lubrication properties, and this is based on the unusual structural features of the major lipid species-triacylglycerol (TAG) estolides. Ov TAG estolides contain two non-hydroxylated, glycerol-bound fatty acids (FAs) and one dihydroxylated FA with an estolide branch. Estolide branch chains vary in composition and length, leading to their thermal stability and functional properties. Using this concept, nature-guided estolides of castor oil were synthesized. As predicted, they showed improved lubrication properties similar to Ov seed oil. Our results demonstrate a structure-based design of novel lubricants inspired by natural materials.

14.
Horm Cancer ; 7(4): 260-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27307252

RESUMO

Prostate epithelial cells control the potency and availability of androgen hormones in part by inactivation and elimination. UDP-glucose dehydrogenase (UGDH) catalyzes the NAD(+)-dependent oxidation of UDP-glucose to UDP-glucuronate, an essential precursor for androgen inactivation by the prostate glucuronidation enzymes UGT2B15 and UGT2B17. UGDH expression is androgen stimulated, which increases the production of UDP-glucuronate and fuels UGT-catalyzed glucuronidation. In this study, we compared the glucuronidation potential and its impact on androgen-mediated gene expression in an isogenic LNCaP model for androgen-dependent versus castration-resistant prostate cancer. Despite significantly lower androgen-glucuronide output, LNCaP 81 castration-resistant tumor cells expressed higher levels of UGDH, UGT2B15, and UGT2B17. However, the magnitude of androgen-activated UGDH and prostate-specific antigen (PSA) expression, as well as the androgen receptor (AR)-dependent repression of UGT2B15 and UGT2B17, was blunted several-fold in these cells. Consistent with these results, the ligand-activated binding of AR to the PSA promoter and subsequent transcriptional activation were also significantly reduced in castration-resistant cells. Analysis of the UDP-sugar pools and flux through pathways downstream of UDP-glucuronate production revealed that these glucuronidation precursor metabolites were channeled through proteoglycan and glycosaminoglycan biosynthetic pathways, leading to increased surface expression of Notch1. Knockdown of UGDH diminished Notch1 and increased glucuronide output. Overall, these results support a model in which the aberrant partitioning of UDP-glucuronate and other UDP-sugars into alternative pathways during androgen deprivation contributes to the loss of prostate tumor cell androgen sensitivity by promoting altered cell surface proteoglycan expression.


Assuntos
Androgênios/farmacologia , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias da Próstata/metabolismo , Uridina Difosfato Glucose Desidrogenase/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Modelos Biológicos , Regiões Promotoras Genéticas , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA