Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Rev ; 313(1): 120-138, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271889

RESUMO

C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.


Assuntos
Complemento C3 , Complemento C3b , Humanos , Complemento C3/análise , Complemento C3/metabolismo , Complemento C3b/metabolismo , Receptores de Complemento/análise , Sítios de Ligação , Ativação do Complemento
2.
Immunology ; 171(2): 181-197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37885279

RESUMO

Haemolytic disorders, such as sickle cell disease, are accompanied by the release of high amounts of labile heme into the intravascular compartment resulting in the induction of proinflammatory and prothrombotic complications in affected patients. In addition to the relevance of heme-regulated proteins from the complement and blood coagulation systems, activation of the TLR4 signalling pathway by heme was ascribed a crucial role in the progression of these pathological processes. Heme binding to the TLR4-MD2 complex has been proposed recently, however, essential mechanistic information of the processes at the molecular level, such as heme-binding kinetics, the heme-binding capacity and the respective heme-binding sites (HBMs) is still missing. We report the interaction of TLR4, MD2 and the TLR4-MD2 complex with heme and the consequences thereof by employing biochemical, spectroscopic, bioinformatic and physiologically relevant approaches. Heme binding occurs transiently through interaction with up to four HBMs in TLR4, two HBMs in MD2 and at least four HBMs in their complex. Functional studies highlight that mutations of individual HBMs in TLR4 preserve full receptor activation by heme, suggesting that heme interacts with TLR4 through different binding sites independently of MD2. Furthermore, we confirm and extend the major role of TLR4 for heme-mediated cytokine responses in human immune cells.


Assuntos
Transdução de Sinais , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Sítios de Ligação , Citocinas/metabolismo , Antígeno 96 de Linfócito/metabolismo , Lipopolissacarídeos
3.
Arterioscler Thromb Vasc Biol ; 43(8): 1349-1361, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317847

RESUMO

Independent of etiology, hemolytic diseases are associated with thrombosis, inflammation and immune dysregulation, all together contributing to organ damage and poor outcome. Beyond anemia and the loss of the anti-inflammatory functions of red blood cells, hemolysis leads to the release of damage-associated molecular patterns including ADP, hemoglobin, and heme, which act through multiple receptors and signaling pathways fostering a hyperinflammatory and hypercoagulable state. Extracellular free heme is promiscuous alarmin capable of triggering oxido-inflammatory and thrombotic events by inducing the activation of platelets, endothelial and innate cells as well as the coagulation and complement cascades. In this review, we discuss the main mechanisms by which hemolysis and, in particular, heme, drive this thrombo-inflammatory milieu and discuss the consequences of hemolysis on the host response to secondary infections.


Assuntos
Hemoglobinas , Hemólise , Humanos , Hemoglobinas/metabolismo , Eritrócitos/metabolismo , Heme , Inflamação/metabolismo
4.
J Immunol ; 209(7): 1243-1251, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165182

RESUMO

Mouse models of active systemic anaphylaxis rely predominantly on IgG Abs forming IgG-allergen immune complexes that induce IgG receptor-expressing neutrophils and monocytes/macrophages to release potent mediators, leading to systemic effects. Whether anaphylaxis initiates locally or systemically remains unknown. In this study, we aimed at identifying the anatomical location of IgG-allergen immune complexes during anaphylaxis. Active systemic anaphylaxis was induced following immunization with BSA and i.v. challenge with fluorescently labeled BSA. Ag retention across different organs was examined using whole-body fluorescence imaging, comparing immunized and naive animals. Various mouse models and in vivo deletion strategies were employed to determine the contribution of IgG receptors, complement component C1q, myeloid cell types, and anaphylaxis mediators. We found that following challenge, Ag diffused systemically, but specifically accumulated in the lungs of mice sensitized to that Ag, where it formed large Ab-dependent aggregates in the vasculature. Ag retention in the lungs did not rely on IgG receptors, C1q, neutrophils, or macrophages. IgG2a-mediated, but neither IgG1- nor IgG2b-mediated, passive systemic anaphylaxis led to Ag retention in the lung. Neutrophils and monocytes significantly accumulated in the lungs after challenge and captured high amounts of Ag, which led to downmodulation of surface IgG receptors and triggered their activation. Thus, within minutes of systemic injection in sensitized mice, Ag formed aggregates in the lung and liver vasculature, but accumulated specifically and dose-dependently in the lung. Neutrophils and monocytes recruited to the lung captured Ag and became activated. However, Ag aggregation in the lung vasculature was not necessary for anaphylaxis induction.


Assuntos
Anafilaxia , Alérgenos , Animais , Complexo Antígeno-Anticorpo , Complemento C1q , Modelos Animais de Doenças , Imunoglobulina G , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Complemento , Receptores de IgG
5.
Kidney Int ; 104(2): 353-366, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164260

RESUMO

The complement system plays a key role in the pathophysiology of kidney thrombotic microangiopathies (TMA), as illustrated by atypical hemolytic uremic syndrome. But complement abnormalities are not the only drivers of TMA lesions. Among other potential pathophysiological actors, we hypothesized that alteration of heparan sulfate (HS) in the endothelial glycocalyx could be important. To evaluate this, we analyzed clinical and histological features of kidney biopsies from a monocentric, retrospective cohort of 72 patients with TMA, particularly for HS integrity and markers of local complement activation. The role of heme (a major product of hemolysis) as an HS-degrading agent in vitro, and the impact of altering endothelial cell (ECs) HS on their ability to locally activate complement were studied. Compared with a positive control, glomerular HS staining was lower in 57 (79%) patients with TMA, moderately reduced in 20 (28%), and strongly reduced in 37 (51%) of these 57 cases. Strongly reduced HS density was significantly associated with both hemolysis at the time of biopsy and local complement activation (C3 and/or C5b-9 deposits). Using primary endothelial cells (HUVECs, Glomerular ECs), we observed decreased HS expression after short-term exposure to heme, and that artificial HS degradation by exposure to heparinase was associated with local complement activation. Further, prolonged exposure to heme modulated expression of several key genes of glycocalyx metabolism involved in coagulation regulation (C5-EPI, HS6ST1, HS3ST1). Thus, our study highlights the impact of hemolysis on the integrity of endothelial HS, both in patients and in endothelial cell models. Hence, acute alteration of HS may be a mechanism of heme-induced complement activation.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Nefropatias , Microangiopatias Trombóticas , Humanos , Glicocálix/metabolismo , Hemólise , Células Endoteliais/metabolismo , Estudos Retrospectivos , Ativação do Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Nefropatias/metabolismo , Heparitina Sulfato/metabolismo , Heme/metabolismo
6.
Biol Chem ; 403(11-12): 1083-1090, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36254402

RESUMO

Heme regulates important biological processes by transient interactions with many human proteins. The goal of the present study was to assess extends of protein binding promiscuity of heme. To this end we evaluated interaction of heme with >9000 human proteins. Heme manifested high binding promiscuity by binding to most of the proteins in the array. Nevertheless, some proteins have outstanding heme binding capacity. Bioinformatics analyses revealed that apart from typical haemoproteins, these proteins are frequently involved in metal binding or have the potential to recognize DNA. This study can contribute for understanding the regulatory functions of labile heme.


Assuntos
Heme , Humanos , Heme/metabolismo , Ligação Proteica
7.
Proc Natl Acad Sci U S A ; 116(13): 6280-6285, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850533

RESUMO

Hemolytic diseases are frequently linked to multiorgan failure subsequent to vascular damage. Deciphering the mechanisms leading to organ injury upon hemolytic event could bring out therapeutic approaches. Complement system activation occurs in hemolytic disorders, such as sickle cell disease, but the pathological relevance and the acquisition of a complement-activating phenotype during hemolysis remain unclear. Here we found that intravascular hemolysis, induced by injection of phenylhydrazine, resulted in increased alanine aminotransferase plasma levels and NGAL expression. This liver damage was at least in part complement-dependent, since it was attenuated in complement C3-/- mice and by injection of C5-blocking antibody. We evidenced C3 activation fragments' deposits on liver endothelium in mice with intravascular hemolysis or injected with heme as well as on cultured human endothelial cells (EC) exposed to heme. This process was mediated by TLR4 signaling, as revealed by pharmacological blockade and TLR4 deficiency in mice. Mechanistically, TLR4-dependent surface expression of P-selectin triggered an unconventional mechanism of complement activation by noncovalent anchoring of C3 activation fragments, including the typical fluid-phase C3(H2O), measured by surface plasmon resonance and flow cytometry. P-selectin blockade by an antibody prevented complement deposits and attenuated the liver stress response, measured by NGAL expression, in the hemolytic mice. In conclusion, these results revealed the critical impact of the triad TLR4/P-selectin/complement in the liver damage and its relevance for hemolytic diseases. We anticipate that blockade of TLR4, P-selectin, or the complement system could prevent liver injury in hemolytic diseases like sickle cell disease.


Assuntos
Endotélio Vascular/metabolismo , Heme/metabolismo , Hemólise , Selectina-P/metabolismo , Receptor 4 Toll-Like/metabolismo , Alanina Transaminase/sangue , Anemia Falciforme , Animais , Ativação do Complemento , Complemento C3/metabolismo , Modelos Animais de Doenças , Inativação Gênica , Hemólise/efeitos dos fármacos , Humanos , Lipocalina-2/metabolismo , Fígado/lesões , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenil-Hidrazinas/antagonistas & inibidores , Transdução de Sinais , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/genética
8.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012546

RESUMO

Autoantibodies against the complement component C1q (anti-C1q) are among the main biomarkers in lupus nephritis (LN) known to contribute to renal injury. C1q, the recognition subcomponent of the complement classical pathway, forms a heterotetrameric complex with C1r and C1s, and can also associate a central complement regulator and C1 Inhibitor (C1-Inh). However, the frequency and the pathogenic relevance of anti-C1r, anti-C1s and anti-C1-Inh autoantibodies remain poorly studied in LN. In this paper, we screened for anti-C1q, anti-C1r, anti-C1s and anti-C1-Inh autoantibodies and evaluated their association with disease activity and severity in 74 LN patients followed up for 5 years with a total of 266 plasma samples collected. The presence of anti-C1q, anti-C1r, anti-C1s and anti-C1-Inh was assessed by ELISA. IgG was purified by Protein G from antigen-positive plasma and their binding to purified C1q, C1r and C1s was examined by surface plasmon resonance (SPR). The abilities of anti-C1q, anti-C1r and anti-C1s binding IgG on C1 complex formation were analyzed by ELISA. The screening of LN patients' plasma revealed 14.9% anti-C1q positivity; only 4.2%, 6.9% and 0% were found to be positive for anti-C1r, anti-C1s and anti-C1-Inh, respectively. Significant correlations were found between anti-C1q and anti-dsDNA, and anti-nuclear antibodies, C3 and C4, respectively. High levels of anti-C1q antibodies were significantly associated with renal histologic lesions and correlated with histological activity index. Patients with the most severe disease (A class according to BILAG Renal score) had higher levels of anti-C1q antibodies. Anti-C1r and anti-C1s antibodies did not correlate with the clinical characteristics of the LN patients, did not interfere with the C1 complex formation, and were not measurable via SPR. In conclusion, the presence of anti-C1q, but not anti-C1s or anti-C1r, autoantibodies contribute to the autoimmune pathology and the severity of LN.


Assuntos
Complemento C1r , Nefrite Lúpica , Autoanticorpos , Ativação do Complemento , Complemento C1q/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Humanos , Imunoglobulina G
9.
Kidney Int ; 100(4): 747-749, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556298

RESUMO

The glomerular endothelium produces the key complement regulator factor H (FH), but its role in the endothelial cells protection and functional integrity is unclear. In this edition of Kidney International, Mahajan et al. demonstrate that the endothelial-intrinsic FH is important for the cytoskeletal architecture, monolayer integrity, proliferation control, metabolism, and inflammatory signaling regulation. These findings place the endothelium-derived FH in the center of the pathological process of diseases, characterized with FH genetic abnormalities.


Assuntos
Fator H do Complemento , Células Endoteliais , Ativação do Complemento , Fator H do Complemento/genética , Humanos , Rim , Glomérulos Renais , Transdução de Sinais
10.
Kidney Int ; 99(3): 581-597, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33137339

RESUMO

Rhabdomyolysis is a life-threatening condition caused by skeletal muscle damage with acute kidney injury being the main complication dramatically worsening the prognosis. Specific treatment for rhabdomyolysis-induced acute kidney injury is lacking and the mechanisms of the injury are unclear. To clarify this, we studied intra-kidney complement activation (C3d and C5b-9 deposits) in tubules and vessels of patients and mice with rhabdomyolysis-induced acute kidney injury. The lectin complement pathway was found to be activated in the kidney, likely via an abnormal pattern of Fut2-dependent cell fucosylation, recognized by the pattern recognition molecule collectin-11 and this proceeded in a C4-independent, bypass manner. Concomitantly, myoglobin-derived heme activated the alternative pathway. Complement deposition and acute kidney injury were attenuated by pre-treatment with the heme scavenger hemopexin. This indicates that complement was activated in a unique double-trigger mechanism, via the alternative and lectin pathways. The direct pathological role of complement was demonstrated by the preservation of kidney function in C3 knockout mice after the induction of rhabdomyolysis. The transcriptomic signature for rhabdomyolysis-induced acute kidney injury included a strong inflammatory and apoptotic component, which were C3/complement-dependent, as they were normalized in C3 knockout mice. The intra-kidney macrophage population expressed a complement-sensitive phenotype, overexpressing CD11b and C5aR1. Thus, our results demonstrate a direct pathological role of heme and complement in rhabdomyolysis-induced acute kidney injury. Hence, heme scavenging and complement inhibition represent promising therapeutic strategies.


Assuntos
Injúria Renal Aguda , Rabdomiólise , Injúria Renal Aguda/etiologia , Animais , Ativação do Complemento , Humanos , Rim , Camundongos , Mioglobina , Rabdomiólise/complicações
11.
EMBO J ; 36(8): 1084-1099, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28264884

RESUMO

Properdin (FP) is an essential positive regulator of the complement alternative pathway (AP) providing stabilization of the C3 and C5 convertases, but its oligomeric nature challenges structural analysis. We describe here a novel FP deficiency (E244K) caused by a single point mutation which results in a very low level of AP activity. Recombinant FP E244K is monomeric, fails to support bacteriolysis, and binds weakly to C3 products. We compare this to a monomeric unit excised from oligomeric FP, which is also dysfunctional in bacteriolysis but binds the AP proconvertase, C3 convertase, C3 products and partially stabilizes the convertase. The crystal structure of such a FP-convertase complex suggests that the major contact between FP and the AP convertase is mediated by a single FP thrombospondin repeat and a small region in C3b. Small angle X-ray scattering indicates that FP E244K is trapped in a compact conformation preventing its oligomerization. Our studies demonstrate an essential role of FP oligomerization in vivo while our monomers enable detailed structural insight paving the way for novel modulators of complement.


Assuntos
Convertases de Complemento C3-C5/química , Via Alternativa do Complemento , Properdina/química , Multimerização Proteica , Substituição de Aminoácidos , Convertases de Complemento C3-C5/genética , Convertases de Complemento C3-C5/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Mutação de Sentido Incorreto , Properdina/deficiência , Properdina/genética , Properdina/metabolismo , Domínios Proteicos
12.
Am J Obstet Gynecol ; 225(6): 662.e1-662.e11, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34126086

RESUMO

BACKGROUND: Chronic histiocytic intervillositis (chronic intervillositis) is defined by a diffuse infiltration of monocytes into the intervillous space, which often leads to poor obstetrical outcomes, including recurrent intrauterine growth restriction, miscarriage, and fetal death. The pathogenesis of chronic intervillositis is still poorly defined, and there is an unmet medical need for improved management. OBJECTIVE: This study aimed to demonstrate the role of anti-human leukocyte antigen alloantibodies in the pathogenesis of chronic intervillositis through the application of criteria used in solid-organ transplantation for the diagnosis of antibody-mediated rejection. STUDY DESIGN: A multidisciplinary research study based on thorough immunologic and pathologic investigations was carried out for 2 separate couples who experienced recurrent secondary fetal losses following a first normal pregnancy associated with histologic evidence of chronic intervillositis. RESULTS: Very high levels of complement-fixing, fetus-specific antibodies targeting mismatched human leukocyte antigen alleles, harbored by the 2 paternal haplotypes, were identified in both cases. Polymorphic human leukocyte antigens were expressed on the surface of trophoblastic villi of the inflamed placenta but not in healthy placental tissue. The binding of alloantibodies to paternal human leukocyte antigens induced dramatic activation of the complement classical pathway in trophoblastic villi, leading to C4d deposition and formation of the terminal complex C5b-9. All requirements for the diagnosis of antibody-mediated placental rejection were fulfilled according to the criteria used in the Banff classification of allograft pathology. In silico analysis was performed using a human leukocyte antigen epitope viewer to reconstitute the human leukocyte antigen sensitization history. Reactivity against a single mismatched epitope present in the first-born healthy child accounted for a broad sensitization to human leukocyte antigens, including those harbored by the 2 paternal haplotypes. This finding explained the high rates of chronic intervillositis recurrence during subsequent pregnancies. CONCLUSION: This study provides novel mechanistic insights into the pathogenesis of chronic intervillositis and provides new avenues for individualized counseling and therapeutic options.


Assuntos
Vilosidades Coriônicas/patologia , Retardo do Crescimento Fetal/patologia , Isoanticorpos/sangue , Doenças Placentárias/patologia , Diagnóstico Pré-Natal , Adulto , Diagnóstico Diferencial , Feminino , Humanos , Gravidez
13.
J Am Soc Nephrol ; 31(4): 829-840, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32034108

RESUMO

BACKGROUND: The pathophysiology of the leading cause of pediatric acute nephritis, acute postinfectious GN, including mechanisms of the pathognomonic transient complement activation, remains uncertain. It shares clinicopathologic features with C3 glomerulopathy, a complement-mediated glomerulopathy that, unlike acute postinfectious GN, has a poor prognosis. METHODS: This retrospective study investigated mechanisms of complement activation in 34 children with acute postinfectious GN and low C3 level at onset. We screened a panel of anticomplement protein autoantibodies, carried out related functional characterization, and compared results with those of 60 children from the National French Registry who had C3 glomerulopathy and persistent hypocomplementemia. RESULTS: All children with acute postinfectious GN had activation of the alternative pathway of the complement system. At onset, autoantibodies targeting factor B (a component of the alternative pathway C3 convertase) were found in a significantly higher proportion of children with the disorder versus children with hypocomplementemic C3 glomerulopathy (31 of 34 [91%] versus 4 of 28 [14%], respectively). In acute postinfectious GN, anti-factor B autoantibodies were transient and correlated with plasma C3 and soluble C5b-9 levels. We demonstrated that anti-factor B antibodies enhance alternative pathway convertase activity in vitro, confirming their pathogenic effect. We also identified crucial antibody binding sites on factor B, including one correlated to disease severity. CONCLUSIONS: These findings elucidate the pathophysiologic mechanisms underlying acute postinfectious GN by identifying anti-factor B autoantibodies as contributing factors in alternative complement pathway activation. At onset of a nephritic syndrome with low C3 level, screening for anti-factor B antibodies might help guide indications for kidney biopsy to avoid misdiagnosed chronic glomerulopathy, such as C3 glomerulopathy, and to help determine therapy.


Assuntos
Autoanticorpos/sangue , Ativação do Complemento/fisiologia , Complemento C3/metabolismo , Fator B do Complemento/imunologia , Glomerulonefrite/sangue , Glomerulonefrite/diagnóstico , Criança , Pré-Escolar , Fator Nefrítico do Complemento 3/metabolismo , Feminino , França , Humanos , Masculino , Estudos Retrospectivos
14.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670516

RESUMO

The incidence of kidney disease is rising, constituting a significant burden on the healthcare system and making identification of new therapeutic targets increasingly urgent. The heme oxygenase (HO) system performs an important function in the regulation of oxidative stress and inflammation and, via these mechanisms, is thought to play a role in the prevention of non-specific injuries following acute renal failure or resulting from chronic kidney disease. The expression of HO-1 is strongly inducible by a wide range of stimuli in the kidney, consequent to the kidney's filtration role which means HO-1 is exposed to a wide range of endogenous and exogenous molecules, and it has been shown to be protective in a variety of nephropathological animal models. Interestingly, the positive effect of HO-1 occurs in both hemolysis- and rhabdomyolysis-dominated diseases, where the kidney is extensively exposed to heme (a major HO-1 inducer), as well as in non-heme-dependent diseases such as hypertension, diabetic nephropathy or progression to end-stage renal disease. This highlights the complexity of HO-1's functions, which is also illustrated by the fact that, despite the abundance of preclinical data, no drug targeting HO-1 has so far been translated into clinical use. The objective of this review is to assess current knowledge relating HO-1's role in the kidney and its potential interest as a nephroprotection agent. The potential therapeutic openings will be presented, in particular through the identification of clinical trials targeting this enzyme or its products.


Assuntos
Injúria Renal Aguda/metabolismo , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Nefropatias/metabolismo , Estresse Oxidativo , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/patologia , Animais , Humanos , Rim/citologia , Rim/enzimologia , Rim/metabolismo , Nefropatias/enzimologia , Nefropatias/patologia , Túbulos Renais/citologia , Túbulos Renais/enzimologia , Túbulos Renais/metabolismo , Substâncias Protetoras/metabolismo
15.
J Assoc Physicians India ; 69(4): 11-12, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34470188

RESUMO

INTRODUCTION: Systemic Lupus Erythematosus (SLE) is a chronic multi-system autoimmune disease with varied clinical presentations. Complement components are the major players in disease pathogenesis. This retrospective cross-sectional study was aimed at assessing the role of autoantibodies to these complement components and their association disease activity in newly diagnosed SLE patients from India. METHOD: Clinically diagnosed SLE patients (n=57) classified as per 2015 ACR/SLICC revised criteria were enrolled between November 2016 to April 2017. Patients' sera were tested for C3 and C4 by nephelometry, while serum levels of factor H, factor P (properdin) as well as autoantibodies to C3, C4, factor H and factor P were detected by ELISA. GraphPad Prism Version 6.01 was used for statistical analysis. Mean, SD, SEM were calculated. Mann Whittney U-test, ANOVA, Chi-square test, Odd's Ratio were calculated. Pearson's correlation was used to study relativeness of the study parameters. RESULTS: Among the 57 SLE patients, low C3 were seen in 51% patients, low C4 in 49%, low factor H in 19% and low factor P in 49% patients. Positivity for autoantibodies against complement components, anti-C3 were seen in 42% patients, anti-C4 in 7%, anti-factor H in 19% and anti-factor P in 28% patients. Serum levels of C3 (p=0.0009), C4 (p=0.0031) and anti-C3 autoantibodies (p=0.0029) were significantly associated with ACR/SLICC 2015 scores. CONCLUSION: Hypocomplementemia was found to be associated with higher disease damage score in newly diagnosed SLE patients. This study adds novel arguments for the importance of the anti-C3 autoantibodies as a marker of SLE.


Assuntos
Autoanticorpos , Lúpus Eritematoso Sistêmico , Complemento C4 , Estudos Transversais , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Estudos Retrospectivos
16.
Am J Hematol ; 95(5): 456-464, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31990387

RESUMO

The complement system is an innate immune defense cascade that can cause tissue damage when inappropriately activated. Evidence for complement over activation has been reported in small cohorts of patients with sickle cell disease (SCD). However, the mechanism governing complement activation in SCD has not been elucidated. Here, we observe that the plasma concentration of sC5b-9, a reliable marker for terminal complement activation, is increased at steady state in 61% of untreated SCD patients. We show that greater complement activation in vitro is promoted by SCD erythrocytes compared to normal ones, although no significant differences were observed in the regulatory proteins CD35, CD55, and CD59 in whole blood. Complement activation is positively correlated with the percentage of dense sickle cells (DRBCs). The expression levels of CD35, CD55, and CD59 are reduced in DRBCs, suggesting inefficient regulation when cell density increases. Moreover, the surface expression of the complement regulator CD46 on granulocytes was inversely correlated with the plasma sC5b-9. We also show increased complement deposition in cultured human endothelial cells incubated with SCD serum, which is diminished by the addition of the heme scavenger hemopexin. Treatment of SCD patients with hydroxyurea produces substantial reductions in complement activation, measured by sC5b-9 concentration and upregulation of CD46, as well as decreased complement activation on RBCs in vitro. In conclusion, complement over activation is a common pathogenic event in SCD that is associated with formation of DRBCs and hemolysis. And, it affects red cells, leukocytes and endothelial cells. This complement over activation is partly alleviated by hydroxyurea therapy.


Assuntos
Anemia Falciforme/terapia , Contagem de Células/métodos , Ativação do Complemento/genética , Hemólise/fisiologia , Hidroxiureia/uso terapêutico , Adolescente , Adulto , Feminino , Humanos , Hidroxiureia/farmacologia , Pessoa de Meia-Idade , Adulto Jovem
18.
Immunol Rev ; 274(1): 307-329, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27782324

RESUMO

Endothelium is strategically located at the interface between blood and interstitial tissues, placing thus endothelial cell as a key player in vascular homeostasis. Endothelial cells are in a dynamic equilibrium with their environment and constitute concomitantly a source, a barrier, and a target of defensive mediators. This review will discuss the recent advances in our understanding of the complex crosstalk between the endothelium, the complement system and the hemostasis in health and in disease. The first part will provide a general introduction on endothelial cells heterogeneity and on the physiologic role of the complement and hemostatic systems. The second part will analyze the interplay between complement, hemostasis and endothelial cells in physiological conditions and their alterations in diseases. Particular focus will be made on the prototypes of thrombotic microangiopathic disorders, resulting from complement or hemostasis dysregulation-mediated endothelial damage: atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Novel aspects of the pathophysiology of the thrombotic microangiopathies will be discussed.


Assuntos
Síndrome Hemolítico-Urêmica Atípica/imunologia , Proteínas do Sistema Complemento/metabolismo , Células Endoteliais/fisiologia , Púrpura Trombocitopênica Trombótica/imunologia , Microangiopatias Trombóticas/imunologia , Animais , Coagulação Sanguínea , Hemostasia , Homeostase , Humanos
19.
Pediatr Nephrol ; 34(3): 533-537, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30560448

RESUMO

BACKGROUND: Hemolytic uremic syndrome (HUS) has been associated with a number of infectious agents. We report here the case of an infant with severe Bordetella pertussis infection who developed HUS. CASE DIAGNOSIS/TREATMENT: A 2-month-old preterm male was admitted for severe Bordetella pertussis infection. Symptoms leading to a diagnosis of hemolytic uremic syndrome (HUS) rapidly appeared: hemolytic anemia, thrombocytopenia, and acute kidney injury. He was treated with 25 days of peritoneal dialysis and received complement-targeting therapy with eculizumab (five injections over 2 months), in addition to blood transfusions, antibiotics, and respiratory support. The outcome was favorable. The genetic workup found a complement factor H gene variant which has been associated with atypical HUS. This variant was located in the C3b-binding site and functional tests revealed that it perturbed the regulatory activity of factor H. CONCLUSION: This case suggests that pertussis is a strong trigger of HUS and that complement investigations are necessary to guide treatment and understand the pathophysiology.


Assuntos
Síndrome Hemolítico-Urêmica Atípica/microbiologia , Bordetella pertussis/imunologia , Complemento C3b/metabolismo , Fator H do Complemento/genética , Coqueluche/complicações , Antibacterianos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Síndrome Hemolítico-Urêmica Atípica/genética , Síndrome Hemolítico-Urêmica Atípica/imunologia , Síndrome Hemolítico-Urêmica Atípica/terapia , Sítios de Ligação/genética , Transfusão de Sangue , Bordetella pertussis/isolamento & purificação , Ativação do Complemento/genética , Ativação do Complemento/imunologia , Complemento C3b/imunologia , Fator H do Complemento/metabolismo , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Diálise Peritoneal , Polimorfismo de Nucleotídeo Único , Coqueluche/imunologia , Coqueluche/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA