Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arch Microbiol ; 206(3): 99, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351393

RESUMO

Feather waste is a highly prevalent form of keratinous waste that is generated by the poultry industry. The global daily production of feather waste has been shown to approach 5 million tons, typically being disposed of through methods such as dumping, landfilling, or incineration which contribute significantly to environmental pollutions. The proper management of these keratinous wastes is crucial to avoid environmental contamination. The study was carried out to isolate the keratinolytic fungi from the poultry disposal sites of different region of North-East India to evaluate its potential in bioremediation of the feathers wastes. Out of 12 fungal strains isolated from the sites, the fungus showing the highest zone of hydrolysis on both the skim milk and keratin agar medium was selected for the study and the molecular identification of the isolate was performed through DNA sequence analysis by amplifying the internal transcribed spacer (ITS) region. The sequence results showed higher similarity (above 95%) with Aspergillus spp. and was named Aspergillus sp. Iro-1. The strain was further analyzed for its feather degrading potential which was performed in submerged conditions under optimized conditions. The study showed that the strain could effectively degrade the feathers validated through weight loss method, and the structural deformations in the feathers were visualized through scanning electron microscopy (SEM). Aspergillus sp. Iro-1 was obtained from the southern region of Assam. It would be of great importance as the implementation of this sp. can help in the bioremediation of feathers wastes in this region. This is the first study of identification of feather degrading fungus from southern part of Assam (Barak).


Assuntos
Peptídeo Hidrolases , Aves Domésticas , Animais , Aves Domésticas/microbiologia , Peptídeo Hidrolases/metabolismo , Fungos/genética , Fungos/metabolismo , Hidrólise , Biodegradação Ambiental , Queratinas/metabolismo , Concentração de Íons de Hidrogênio , Galinhas , Temperatura
2.
Metab Brain Dis ; 38(3): 805-817, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36745251

RESUMO

Modulation of cell signaling pathways is the key area of research towards the treatment of neurodegenerative disorders. Altered Nrf2-Keap1-ARE (Nuclear factor erythroid-2-related factor 2-Kelch-like ECH-associated protein 1-Antioxidant responsive element) and SIRT1 (Sirtuin 1) cell signaling pathways are considered to play major role in the etiology and pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD). Strikingly, betanin, a betanidin 5-O-ß-D-glucoside compound is reported to show commendable anti-oxidative, anti-inflammatory and anti-apoptotic effects in several disease studies including AD and PD. The present review discusses the pre-clinical studies demonstrating the neuroprotective effects of betanin by virtue of its potential to ameliorate oxidative stress, neuroinflammation, abnormal protein aggregation and cell death. It highlights the direct linkage between the neuroprotective abilities of betanin and upregulation of the Nrf2-Keap1-ARE and SIRT1 signaling pathways. The review further hypothesizes the involvement of the betanin-Nrf2-ARE route in the inhibition of beta-amyloid aggregation through beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), one of the pivotal hallmarks of AD. The present review hereby for the first time elaborately discusses the reported neuroprotective abilities of betanin and decodes the Nrf2 and SIRT1 modulating potential of betanin as a primary mechanism of action behind, hence highlighting it as a novel drug candidate for the treatment of neurodegenerative diseases in the near future.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Parkinson/tratamento farmacológico , Neuroproteção , Betacianinas , Proteína 1 Associada a ECH Semelhante a Kelch , Secretases da Proteína Precursora do Amiloide/metabolismo , Sirtuína 1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Transdução de Sinais , Estresse Oxidativo
3.
Phytother Res ; 37(12): 5657-5699, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823581

RESUMO

Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.


Assuntos
Doença de Alzheimer , Curcumina , Doença de Parkinson , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico
4.
Metab Brain Dis ; 37(6): 1887-1900, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35622265

RESUMO

Dopaminergic neuroprotection is the main interest in designing novel therapeutics against Parkinson's disease (PD). In the process of dopaminergic degeneration, mitochondrial dysfunctions and inflammation are significant. While the existing drugs provide symptomatic relief against PD, a therapy conferring total neuroprotection by targeting multiple degenerative pathways is still lacking. Garcinia morella is a common constituent of Ayurvedic medication and has been used for the treatment of inflammatory disorders. The present study investigates whether administration of G. morella fruit extract (GME) in MPTP mouse model of PD protects against dopaminergic neurodegeneration, including the underlying pathophysiologies, and reverses the motor behavioural abnormalities. Administration of GME prevented the loss of dopaminergic cell bodies in the substantia nigra and its terminals in the corpus striatum of PD mice. Subsequently, reversal of parkinsonian behavioural abnormalities, viz. akinesia, catalepsy, and rearing, was observed along with the recovery of striatal dopamine and its metabolites in the experimental model. Furthermore, reduced activity of the mitochondrial complex II in the nigrostriatal pathway of brain of the mice was restored after the administration of GME. Also, MPTP-induced enhanced activation of Glial fibrillary acidic protein (GFAP) and neuronal nitric oxide synthase (nNOS) in the nigrostriatal pathway, which are the markers of inflammatory stress, were found to be ameliorated on GME treatment. Thus, our study presented a novel mode of dopaminergic neuroprotection by G. morella in PD by targeting the mitochondrial dysfunctions and neuroinflammation, which are considered to be intricately associated with the loss of dopaminergic neurons.


Assuntos
Garcinia , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Garcinia/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neuroproteção , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
5.
Neurochem Int ; : 105803, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992819

RESUMO

The prevalence of the world's second leading neurodegenerative disorder Parkinson's disease (PD) is well known while its pathogenesis is still a topical issue to explore. Clinical and experimental reports suggest the prevalence of disturbed gut microflora in PD subjects, with an abundance of especially Gram-negative bacteria. The endotoxin lipopolysaccharide (LPS) released from the outer cell layer of these bacteria interacts with the toll-like receptor 4 (TLR4) present on the macrophages and it stimulates the downstream inflammatory cascade in both the gut and brain. Recent research also suggests a positive correlation between LPS, alpha-synuclein, and TLR4 levels, which indicates the contribution of a parallel LPS-alpha-synuclein-TLR4 axis in stimulating inflammation and neurodegeneration in the gut and brain, establishing a body-first type of PD. However, owing to the novelty of this paradigm, further investigation is mandatory. Modulating LPS biosynthesis and LPS-TLR4 interaction can ameliorate gut dysbiosis and PD. Several synthetic LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase; LPS-synthesizing enzyme) inhibitors and TLR4 antagonists are reported to show beneficial effects including neuroprotection in PD models, however, are not devoid of side effects. Plant-derived compounds have been long documented for their benefits as nutraceuticals and thus to search for effective, safer, and multitarget therapeutics, the present study focused on summarizing the evidence reporting the potential of phyto-compounds as LpxC inhibitors and TLR4 antagonists. Studies demonstrating the dual potential of phyto-compounds as the modulators of LpxC and TLR4 have not yet been reported. Also, very few preliminary studies have reported LpxC inhibition by phyto-compounds. Nevertheless, remarkable neuroprotection along with TLR4 antagonism has been shown by curcumin and juglanin in PD models. The present review thus provides a wide look at the research progressed to date in discovering phyto-compounds that can serve as LpxC inhibitors and TLR4 antagonists. The study further recommends the need for expanding the search for potential candidates that can render dual protection by inhibiting both the biosynthesis and TLR4 interaction of LPS. Such multitarget therapeutic intervention is believed to bring fruitful yields in countering gut dysbiosis, neuroinflammation, and dopaminergic neuron damage in PD patients through a single treatment paradigm.

6.
In Silico Pharmacol ; 12(1): 54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860143

RESUMO

The recalcitrant, fibrous protein keratin is found in the outermost layer of vertebrate skin, feathers, hair, horn, and hooves. Approximately, 10 million tons of keratin wastes are produced annually worldwide, of which around 8.5 million tons are from feather wastes. The biodegradation of keratin has been a challenge due to the lack of understanding of biological parameters that modulate the process. Few soil-borne microbes are capable of producing keratinase enzyme which has the potential to degrade the hard keratin. However, various pesticides are abundantly used for the management of poultry farms and reports suggest the presence of the pesticide residues in feather. Hence, it was hypothesized that pesticides would interact with the substrate-binding or allosteric sites of the keratinase enzyme and interferes with the keratin-degradation process. In the present study, molecular interactions of 20 selected pesticides with the keratinase enzyme were analyzed by performing molecular docking. In blind docking, 14 out of 20 pesticides showed higher inhibitory potential than the known inhibitor phenylmethylsulfonyl flouride, all of which exhibited higher inhibitory potential in site-specific docking. The stability and strength of the protein complexes formed by the top best potential pesticides namely fluralaner, teflubenzuron, cyhalothrin, and cyfluthrin has been further validated by molecular dynamic simulation studies. The present study is the first report for the preliminary investigation of the keratinase-inhibitory potential of pesticides and highlights the plausible role of these pesticides in hindering the biological process of keratin degradation and thereby their contribution in environmental pollution. Graphical abstract: Illustration depicting the hypothesis, experimental procedure, and the resultant keratinase-inhibitory potential of selected pesticides.

7.
ACS Chem Neurosci ; 14(16): 2830-2848, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534999

RESUMO

Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration, resulting in dopamine depletion and motor behavior deficits. Since the discovery of L-DOPA, it has been the most prescribed drug for symptomatic relief in PD, whose prolonged use, however, causes undesirable motor fluctuations like dyskinesia and dystonia. Further, therapeutics targeting the pathological hallmarks of PD including α-synuclein aggregation, oxidative stress, neuroinflammation, and autophagy impairment have also been developed, yet PD treatment is a largely unmet success. The inception of the nanovesicle-based drug delivery approach over the past few decades brings add-on advantages to the therapeutic strategies for PD treatment in which nanovesicles (basically phospholipid-containing artificial structures) are used to load and deliver drugs to the target site of the body. The present review narrates the characteristic features of nanovesicles including their blood-brain barrier permeability and ability to reach dopaminergic neurons of the brain and finally discusses the current status of this technology in the treatment of PD. From the review, it becomes evident that with the assistance of nanovesicle technology, the therapeutic efficacy of anti-PD pharmaceuticals, phyto-compounds, as well as that of nucleic acids targeting α-synuclein aggregation gained a significant increment. Furthermore, owing to the multiple drug-carrying abilities of nanovesicles, combination therapy targeting multiple pathogenic events of PD has also found success in preclinical studies and will plausibly lead to effective treatment strategies in the near future.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Dopamina/farmacologia , Levodopa/farmacologia , Levodopa/uso terapêutico , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo
8.
J Med Food ; 26(10): 705-720, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37646629

RESUMO

After consumption, probiotics provide health benefits to the host. Probiotics and their metabolites have therapeutic and nutritional properties that help to alleviate gastrointestinal, neurological, and cardiovascular problems. Probiotics strengthen host immunity through various mechanisms, including improved gut barrier function, receptor site blocking, competitive exclusion of pathogens, and the production of bioactive molecules. Emerging evidence suggests that intestinal bowel diseases can be fatal, but regular probiotic consumption can alleviate disease symptoms. The use and detailed description of the health benefits of probiotics to consumers in terms of reducing intestinal infection, inflammation, and digestive disorders are discussed in this review. The well-designed and controlled studies that examined the use of probiotics to reduce life-threatening activities caused by intestinal bowel diseases are also covered. This review discussed the active principles and potency of probiotics as evidenced by the known effects on host health, in addition to providing information on the mechanism of action.


Assuntos
Probióticos , Humanos , Probióticos/uso terapêutico , Probióticos/metabolismo , Inflamação
9.
Curr Drug Metab ; 23(9): 693-707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619248

RESUMO

INTRODUCTION: Nanovesicle technology is making a huge contribution to the progress of treatment studies for various diseases, including Alzheimer's disease (AD). AD is the leading neurodegenerative disorder characterized by severe cognitive impairment. Despite the prevalence of several forms of anti-AD drugs, the accelerating pace of AD incidence cannot becurbed, and for rescue, nanovesicle technology has grabbed much attention. METHODOLOGY: Comprehensive literature search was carried out using relevant keywords and online database platforms. The main concepts that have been covered included a complex pathomechanism underlying increased acetylcholinesterase (AchE) activity, ß-amyloid aggregation, and tau-hyperphosphorylation forming neurofibrillary tangles (NFTs) in the brain, which are amongst the major hallmarks of AD pathology. Therapeutic recommendations exist in the form of AchE inhibitors, along with anti-amyloid and anti-tau therapeutics, which are being explored at a high pace. The degree of the therapeutic outcome, however, gets restricted by the pharmacological limitations. Susceptibility to peripheral metabolism and rapid elimination, inefficiency to cross the blood-brain barrier (BBB) and reach the target brain site are the factors that lower the biostability and bioavailability of anti-AD drugs. The nanovesicle technology has emerged as a route to preserve the therapeutic efficiency of the anti-AD drugs and promote AD treatment. The review hereby aims to summarize the developments made by the nanovesicle technology in aiding the delivery of synthetic and plant-based therapeutics targeting the molecular mechanism of AD pathology. CONCLUSION: Nanovesicles appear to efficiently aid in target-specific delivery of anti-AD therapeutics and nullify the drawbacks posed by free drugs, besides reducing the dosage requirement and the adversities associated. In addition, the nanovesicle technology also appears to uplift the therapeutic potential of several phyto-compounds with immense anti-AD properties. Furthermore, the review also sheds light on future perspectives to mend the gaps that prevail in the nanovesicle-mediated drug delivery in AD treatment strategies.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Acetilcolinesterase/metabolismo , Acetilcolinesterase/uso terapêutico , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Peptídeos beta-Amiloides/metabolismo
10.
Methods Mol Biol ; 2497: 73-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771435

RESUMO

Mitochondrial impairment stands to be a major factor which contributes to the onset and pathogenesis of several neurodegenerative disorders, of which Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are among the notable ones. Extensive researches suggest the probable role of mitochondrial complex II and III dysfunction as underlying players in the pathogenesis of AD, PD, and HD. Present scenario of the world in occurrence of neurodegenerative disorders demands more research and development in this field. The development of enzyme histochemistry as an analytical technique has eased the assessment of mitochondrial complex activity at both qualitative and quantitative levels. Based on the principle of redox reactions of chromogenic substrates catalyzed by the enzymes in question, this histochemical analysis has been applied by researchers worldwide and has proved to be reliable. The present chapter hereby discusses the methods followed in performing histoenzymology of mitochondrial complex II and III activity. The chapter also puts light on the precautions which should be followed while performing histoenzymology in order to yield significant results.


Assuntos
Doença de Alzheimer , Doença de Huntington , Doenças Neurodegenerativas , Doença de Parkinson , Doença de Alzheimer/patologia , Encéfalo/patologia , Humanos , Doença de Huntington/patologia , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Doença de Parkinson/patologia
11.
Nutrients ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364775

RESUMO

Background: Iron deficiency is a common phenomenon in sports and may lead to impaired physical performance. The aim of the study was to determine the frequency of iron deficiency in competitive athletes and to discuss the resulting consequences. Methods: The data of 629 athletes (339 male, 290 female) who presented for their annual basic sports medicine examination were investigated. Depending on age (<14 years, 15−17 years, ≥18−30 years), four groups ((I.) normal hemoglobin (Hb) and ferritin level (≥30 ng/mL for adults and 15−18-year-olds; ≥20 ng/mL, respectively, ≥15 ng/mL for adolescents and children), (II.) prelatent iron deficiency (ID) (normal Hb, low ferritin), (III.) latent ID (additionally elevated soluble transferrin receptor or decreased transferrin saturation) and (IV.) manifest anemia) were distinguished. In addition, the iron status and exercise capacity of different types of sports were compared. Results: Overall we found an iron deficiency of 10.9% in male (mainly in adolescence) and 35.9% in female athletes (emphasized in adolescence and young adulthood). There were no significant differences in iron status in regard to the different sport types or in maximum performance for the different groups of iron deficiency. Conclusions: Adolescent and female athletes are more likely to have an iron deficiency. Therapy concepts for athletes therefore should pay attention to iron-rich diets.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Anemia Ferropriva/epidemiologia , Anemia Ferropriva/diagnóstico , Atletas , Ferritinas , Hemoglobinas/metabolismo , Ferro/metabolismo , Estudos Retrospectivos
12.
Neurochem Int ; 148: 105068, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34022252

RESUMO

7,8-dihydroxyflavone (DHF), a naturally-occurring plant-based flavone, is a high-affinity tyrosine kinase receptor B (TrkB) agonist and a bioactive molecule of therapeutic interest for neuronal survival, differentiation, synaptic plasticity and neurogenesis. In the family of neurotrophic factors, this small BDNF-mimetic molecule has attracted considerable attention due to its oral bioavailability and ability to cross the blood-brain barrier. Recent evidences have shed light on the neuroprotective role of this pleiotropic flavone against several neurological disorders, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, Huntington's disease, and other CNS disorders. DHF also elicits potent protective actions against toxins-induced insults to brain and neuronal cells. DHF shows promising anti-oxidant and anti-inflammatory properties in ameliorating the neurodegenerative processes affecting the CNS. This review provides an overview of the significant neuroprotective potentials of DHF and discusses how it exerts its multitudinous beneficial effects by modulating different pathways linked with the pathophysiology of CNS disorders, and thus proposes it to be a nutraceutical against a broad spectrum of neurological disorders.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Suplementos Nutricionais , Flavonas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Doenças do Sistema Nervoso Central/prevenção & controle , Humanos , Doenças Neurodegenerativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA