RESUMO
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.
Assuntos
Infecções por Adenovirus Humanos , Genômica , Hepatite , Criança , Humanos , Doença Aguda/epidemiologia , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/virologia , Linfócitos B/imunologia , Perfilação da Expressão Gênica , Hepatite/epidemiologia , Hepatite/imunologia , Hepatite/virologia , Imuno-Histoquímica , Fígado/imunologia , Fígado/virologia , Proteômica , Linfócitos T/imunologiaRESUMO
We detected a novel GII.4 variant with an amino acid insertion at the start of epitope A in viral protein 1 of noroviruses from the United States, Gabon, South Africa, and the United Kingdom collected during 2017-2022. Early identification of GII.4 variants is crucial for assessing pandemic potential and informing vaccine development.
Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Gastroenterite/epidemiologia , Norovirus/genética , Infecções por Caliciviridae/epidemiologia , Genótipo , Pandemias , FilogeniaRESUMO
Chronic human norovirus (HuNoV) infections in immunocompromised patients result in severe disease, yet approved antivirals are lacking. RNA-dependent RNA polymerase (RdRp) inhibitors inducing viral mutagenesis display broad-spectrum in vitro antiviral activity, but clinical efficacy in HuNoV infections is anecdotal and the potential emergence of drug-resistant variants is concerning. Upon favipiravir (and nitazoxanide) treatment of four immunocompromised patients with life-threatening HuNoV infections, viral whole-genome sequencing showed accumulation of favipiravir-induced mutations which coincided with clinical improvement although treatment failed to clear HuNoV. Infection of zebrafish larvae demonstrated drug-associated loss of viral infectivity and favipiravir treatment showed efficacy despite occurrence of RdRp variants potentially causing favipiravir resistance. This indicates that within-host resistance evolution did not reverse loss of viral fitness caused by genome-wide accumulation of sequence changes. This off-label approach supports the use of mutagenic antivirals for treating prolonged RNA viral infections and further informs the debate surrounding their impact on virus evolution.
Assuntos
Amidas , Norovirus , Pirazinas , Vírus , Animais , Humanos , Norovirus/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Peixe-Zebra , Mutagênese , RNA Polimerase Dependente de RNA/genética , Hospedeiro ImunocomprometidoRESUMO
BACKGROUND: Post-vaccination infections challenge the control of the coronavirus disease 2019 (COVID-19) pandemic. METHODS: We matched 119 cases of post-vaccination severe acute respiratory syndrome coronavirus 2 infection with BNT162b2 mRNA or ChAdOx1 nCOV-19 to 476 unvaccinated patients with COVID-19 (September 2020-March 2021) according to age and sex. Differences in 60-day all-cause mortality, hospital admission, and hospital length of stay were evaluated. Phylogenetic, single-nucleotide polymorphism (SNP), and minority variant allele (MVA) full-genome sequencing analysis was performed. RESULTS: Overall, 116 of 119 cases developed COVID-19 post-first vaccination dose (median, 14 days). Thirteen of 119 (10.9%) cases and 158 of 476 (33.2%) controls died (Pâ <â .001), corresponding to the 4.5 number needed to treat (NNT). Multivariably, vaccination was associated with a 69.3% (95% confidence interval [CI]: 45.8 to 82.6) relative risk (RR) reduction in mortality. Similar results were seen in subgroup analysis for patients with infection onset ≥14 days after first vaccination and across vaccine subgroups. Hospital admissions (odds ratio, 0.80; 95% CI: .51 to 1.28) and length of stay (-1.89 days; 95% CI: -4.57 to 0.78) were lower for cases, while cycle threshold values were higher (30.8 vs 28.8, Pâ =â .053). B.1.1.7 was the predominant lineage in cases (100 of 108, 92.6%) and controls (341 of 446, 76.5%). Genomic analysis identified 1 post-vaccination case that harbored the E484K vaccine-escape mutation (B.1.525 lineage). CONCLUSIONS: Previous vaccination reduces mortality when B.1.1.7 is the predominant lineage. No significant lineage-specific genomic changes during phylogenetic, SNP, and MVA analysis were detected.
Assuntos
COVID-19 , SARS-CoV-2 , Vacina BNT162 , Estudos de Casos e Controles , ChAdOx1 nCoV-19 , Genômica , Humanos , Filogenia , SARS-CoV-2/genética , VacinaçãoRESUMO
We present 109 near full-length HIV genomes amplified from blood serum samples obtained during early 1986 from across Uganda, which to our knowledge is the earliest and largest population sample from the initial phase of the HIV epidemic in Africa. Consensus sequences were made from paired-end Illumina reads with a target-capture approach to amplify HIV material following poor success with standard approaches. In comparisons with a smaller 'intermediate' genome dataset from 1998 to 1999 and a 'modern' genome dataset from 2007 to 2016, the proportion of subtype D was significantly higher initially, dropping from 67% (73/109), to 57% (26/46) to 17% (82/465) respectively (p < 0.0001). Subtype D has previously been shown to have a faster rate of disease progression than other subtypes in East African population studies, and to have a higher propensity to use the CXCR4 co-receptor ("X4 tropism"); associated with a decrease in time to AIDS. Here we find significant differences in predicted tropism between A1 and D subtypes in all three sample periods considered, which is particularly striking the 1986 sample: 66% (53/80) of subtype D env sequences were predicted to be X4 tropic compared with none of the 24 subtype A1. We also analysed the frequency of subtype in the envelope region of inter-subtype recombinants, and found that subtype A1 is over-represented in env, suggesting recombination and selection have acted to remove subtype D env from circulation. The reduction of subtype D frequency over three decades therefore appears to be a result of selective pressure against X4 tropism and its higher virulence. Lastly, we find a subtype D specific codon deletion at position 24 of the V3 loop, which may explain the higher propensity for subtype D to utilise X4 tropism.
Assuntos
Infecções por HIV , HIV-1 , Receptores CXCR4 , Tropismo Viral , Humanos , População Africana , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , HIV-1/genética , Receptores CXCR4/genética , UgandaRESUMO
BACKGROUND: Deep sequencing could improve understanding of HIV treatment failure and viral population dynamics. However, this tool is often inaccessible in low- and middle-income countries. OBJECTIVES: To determine the genetic patterns of resistance emerging in West African HIV-1 subtypes during first-line virological failure, and the implications for future antiretroviral options. PATIENTS AND METHODS: Participants were selected from a Nigerian cohort of people living with HIV who had failed first-line ART and subsequently switched to second-line therapy. Whole HIV-1 genome sequences were generated from first-line virological failure samples with Illumina MiSeq. Mutations detected at ≥2% frequency were analysed and compared by subtype. RESULTS: HIV-1 sequences were obtained from 101 participants (65% female, median age 30 years, median 32.9 months of nevirapine- or efavirenz-based ART). Thymidine analogue mutations (TAMs) were detected in 61%, other core NRTI mutations in 92% and NNRTI mutations in 99%. Minority variants (<20% frequency) comprised 18% of all mutations. K65R was more prevalent in CRF02_AG than G subtypes (33% versus 7%; Pâ=â0.002), and ≥3 TAMs were more common in G than CRF02_AG (52% versus 24%; Pâ=â0.004). Subtype G viruses also contained more RT cleavage site mutations. Cross-resistance to at least one of the newer NNRTIs, doravirine, etravirine or rilpivirine, was predicted in 81% of participants. CONCLUSIONS: Extensive drug resistance had accumulated in people with West African HIV-1 subtypes, prior to second-line ART. Deep sequencing significantly increased the detection of resistance-associated mutations. Caution should be used if considering newer-generation NNRTI agents in this setting.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Adulto , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Feminino , Genótipo , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Nigéria , Falha de Tratamento , Carga ViralRESUMO
Detailed information on intrahost viral evolution in SARS-CoV-2 with and without treatment is limited. Sequential viral loads and deep sequencing of SARS-CoV-2 from the upper respiratory tract of nine hospitalized children, three of whom were treated with remdesivir, revealed that remdesivir treatment suppressed viral load in one patient but not in a second infected with an identical strain without any evidence of drug resistance found. Reduced levels of subgenomic RNA during treatment of the second patient, suggest an additional effect of remdesivir on viral replication. Haplotype reconstruction uncovered persistent SARS-CoV-2 variant genotypes in four patients. These likely arose from within-host evolution, although superinfection cannot be excluded in one case. Although our dataset is small, observed sample-to-sample heterogeneity in variant frequencies across four of nine patients suggests the presence of discrete viral populations in the lung with incomplete population sampling in diagnostic swabs. Such compartmentalization could compromise the penetration of remdesivir into the lung, limiting the drugs in vivo efficacy, as has been observed in other lung infections.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Evolução Molecular , SARS-CoV-2/genética , Monofosfato de Adenosina/uso terapêutico , Adolescente , Alanina/uso terapêutico , Criança , Pré-Escolar , Farmacorresistência Viral , Feminino , Haplótipos , Humanos , Lactente , Pulmão/virologia , Masculino , Filogenia , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Carga Viral , Replicação Viral/efeitos dos fármacosRESUMO
Recent sequencing efforts have led to estimates of human cytomegalovirus (HCMV) genome-wide intrahost diversity that rival those of persistent RNA viruses [Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF (2011) PLoS Pathog 7:e1001344]. Here, we deep sequence HCMV genomes recovered from single and longitudinally collected blood samples from immunocompromised children to show that the observations of high within-host HCMV nucleotide diversity are explained by the frequent occurrence of mixed infections caused by genetically distant strains. To confirm this finding, we reconstructed within-host viral haplotypes from short-read sequence data. We verify that within-host HCMV nucleotide diversity in unmixed infections is no greater than that of other DNA viruses analyzed by the same sequencing and bioinformatic methods and considerably less than that of human immunodeficiency and hepatitis C viruses. By resolving individual viral haplotypes within patients, we reconstruct the timing, likely origins, and natural history of superinfecting strains. We uncover evidence for within-host recombination between genetically distinct HCMV strains, observing the loss of the parental virus containing the nonrecombinant fragment. The data suggest selection for strains containing the recombinant fragment, generating testable hypotheses about HCMV evolution and pathogenesis. These results highlight that high HCMV diversity present in some samples is caused by coinfection with multiple distinct strains and provide reassurance that within the host diversity for single-strain HCMV infections is no greater than for other herpesviruses.
Assuntos
Citomegalovirus/genética , Recombinação Genética/genética , Superinfecção/genética , Sequência de Bases/genética , Criança , Pré-Escolar , Infecções por Citomegalovirus/virologia , DNA Viral/genética , Feminino , Variação Genética/genética , Genoma Humano/genética , Genoma Viral , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hospedeiro Imunocomprometido/genética , Lactente , Recém-Nascido , Masculino , Análise de Sequência de DNA/métodosRESUMO
We report a new norovirus GII.4 variant, GII.4 Hong Kong, with low-level circulation in 4 Eurasia countries since mid-2017. Amino acid substitutions in key residues on the virus capsid associated with the emergence of pandemic noroviruses suggest that GII.4 Hong Kong has the potential to become the next pandemic variant.
Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Infecções por Caliciviridae/epidemiologia , Europa (Continente)/epidemiologia , Gastroenterite/epidemiologia , Genótipo , Hong Kong/epidemiologia , Humanos , Norovirus/genética , FilogeniaRESUMO
OBJECTIVES: HIV-1 integrase inhibitors are recommended as first-line therapy by WHO, though efficacy and resistance data for non-B subtypes are limited. Two recent trials have identified the integrase L74I mutation to be associated with integrase inhibitor treatment failure in HIV-1 non-B subtypes. We sought to define the prevalence of integrase resistance mutations, including L74I, in West Africa. METHODS: We studied a Nigerian cohort of recipients prior to and during receipt of second-line PI-based therapy, who were integrase inhibitor-naive. Illumina next-generation sequencing with target enrichment was used on stored plasma samples. Drug resistance was interpreted using the Stanford Resistance Database and the IAS-USA 2019 mutation lists. RESULTS: Of 115 individuals, 59.1% harboured CRF02_AG HIV-1 and 40.9% harboured subtype G HIV-1. Four participants had major IAS-USA integrase resistance-associated mutations detected at low levels (2%-5% frequency). Two had Q148K minority variants and two had R263K (one of whom also had L74I). L74I was detected in plasma samples at over 2% frequency in 40% (46/115). Twelve (26.1%) had low-level minority variants of between 2% and 20% of the viral population sampled. The remaining 34 (73.9%) had L74I present at >20% frequency. L74I was more common among those with subtype G infection (55.3%, 26/47) than those with CRF02_AG infection (29.4%, 20/68) (P = 0.005). CONCLUSIONS: HIV-1 subtypes circulating in West Africa appear to have very low prevalence of major integrase mutations, but significant prevalence of L74I. A combination of in vitro and clinical studies is warranted to understand the potential implications.
Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , África Ocidental , Farmacorresistência Viral/genética , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Integrase de HIV/genética , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , HIV-1/genética , Humanos , Mutação , PrevalênciaRESUMO
BACKGROUND: Influenza A virus causes annual epidemics in humans and is associated with significant morbidity and mortality. Haemagglutinin (HA) and neuraminidase (NA) gene sequencing have traditionally been used to identify the virus genotype, although their utility in detecting outbreak clusters is still unclear. The objective of this study was to determine the utility, if any, of whole-genome sequencing over HA/NA sequencing for infection prevention and control (IPC) in hospitals. METHODS: We obtained all clinical samples from influenza (H1N1)-positive patients at the Great Ormond Street Hospital between January and March 2016. Samples were sequenced using targeted enrichment on an Illumina MiSeq sequencer. Maximum likelihood trees were computed for both whole genomes and concatenated HA/NA sequences. Epidemiological data was taken from routine IPC team activity during the period. RESULTS: Complete genomes were obtained for 65/80 samples from 38 patients. Conventional IPC analysis recognized 1 outbreak, involving 3 children, and identified another potential cluster in the haemato-oncology ward. Whole-genome and HA/NA phylogeny both accurately identified the previously known outbreak cluster. However, HA/NA sequencing additionally identified unrelated strains as part of this outbreak cluster. A whole-genome analysis identified a further cluster of 2 infections that had been previously missed and refuted suspicions of transmission in the haemato-oncology wards. CONCLUSIONS: Whole-genome sequencing is better at identifying outbreak clusters in a hospital setting than HA/NA sequencing. Whole-genome sequencing could provide a faster and more reliable method for outbreak monitoring and supplement routine IPC team work to allow the prevention of transmission.
Assuntos
Infecção Hospitalar/prevenção & controle , Controle de Infecções , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/prevenção & controle , Proteínas Virais/genética , Criança , Infecção Hospitalar/virologia , Surtos de Doenças/prevenção & controle , Genoma Viral , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Neuraminidase/genética , Filogenia , Análise de Sequência de DNA , Sequenciamento Completo do GenomaRESUMO
Background: Norovirus is a leading cause of worldwide and nosocomial gastroenteritis. The study aim was to assess the utility of molecular epidemiology using full genome sequences compared to routine infection prevention and control (IPC) investigations. Methods: Norovirus genomes were generated from new episodes of norovirus at a pediatric tertiary referral hospital over a 19-month period (n = 182). Phylogeny identified clusters of related sequences that were verified using epidemiological and clinical data. Results: Twenty-four clusters of related norovirus sequences ("sequence clusters") were observed, including 8 previously identified by IPC investigations ("IPC outbreaks"). Seventeen sequence clusters (involving 77/182 patients) were corroborated by epidemiological data ("epidemiologically supported clusters"), suggesting transmission between patients. Linked infections were identified among 44 patients who were missed by IPC investigations. Thirty-three percent of norovirus sequences were linked, suggesting nosocomial transmission; 24% of patients had nosocomial infections from an unknown source; and 43% were norovirus positive on admission. Conclusions: We show there are frequent introductions of multiple norovirus strains with extensive onward nosocomial transmission of norovirus in a pediatric hospital with a high proportion of immunosuppressed patients nursed in isolation. Phylogenetic analysis using full genome sequences is more sensitive than classic IPC investigations for identifying linked cases and should be considered when investigating norovirus nosocomial transmission. Sampling of staff, visitors, and the environment may be required for complete understanding of infection sources and transmission routes in patients with nosocomial infections not linked to other patients and among patients with phylogenetically linked cases but no evidence of direct contact.
Assuntos
Infecções por Caliciviridae/transmissão , Infecções por Caliciviridae/virologia , Infecção Hospitalar/transmissão , Infecção Hospitalar/virologia , Genoma Viral , Norovirus/genética , Criança , Surtos de Doenças , Gastroenterite/virologia , Genótipo , Hospitais Pediátricos , Humanos , FilogeniaRESUMO
Background: Adenoviruses are significant pathogens for the immunocompromised, arising from primary infection or reinfection. Serotyping is insufficient to support nosocomial transmission investigations. We investigate whether whole-genome sequencing (WGS) provides clinically relevant information on transmission among patients in a pediatric tertiary hospital. Methods: We developed a target-enriched adenovirus WGS technique for clinical samples and retrospectively sequenced 107 adenovirus-positive residual diagnostic samples, including viremias (>5 × 104 copies/mL), from 37 patients collected January 2011-March 2016. Whole-genome sequencing was used to determine genotype and for phylogenetic analysis. Results: Adenovirus sequences were recovered from 105 of 107 samples. Full genome sequences were recovered from all 20 nonspecies C samples and from 36 of 85 species C viruses, with partial genome sequences recovered from the rest. Whole-genome phylogenetic analysis suggested linkage of 3 genotype A31 cases and uncovered an unsuspected epidemiological link to an A31 infection first detected on the same ward 4 years earlier. In 9 samples from 1 patient who died, we identified a mixed genotype adenovirus infection. Conclusions: Adenovirus WGS from clinical samples is possible and useful for genotyping and molecular epidemiology. Whole-genome sequencing identified likely nosocomial transmission with greater resolution than conventional genotyping and distinguished between adenovirus disease due to single or multiple genotypes.
Assuntos
Adenoviridae/genética , Infecções por Adenovirus Humanos/virologia , Infecção Hospitalar/virologia , Genótipo , Hospedeiro Imunocomprometido , Sequenciamento Completo do Genoma , Adenoviridae/classificação , Infecções por Adenovirus Humanos/transmissão , Adolescente , Criança , Pré-Escolar , Infecção Hospitalar/transmissão , Genômica , Humanos , Lactente , Epidemiologia Molecular , FilogeniaRESUMO
BACKGROUND: Although first detected in animals, the rare rotavirus strain G10P[14] has been sporadically detected in humans in Slovenia, Thailand, United Kingdom and Australia among other countries. Earlier studies suggest that the strains found in humans resulted from interspecies transmission and reassortment between human and bovine rotavirus strains. OBJECTIVES: In this study, a G10P[14] rotavirus genotype detected in a human stool sample in Honduras during the 2010-2011 rotavirus season, from an unvaccinated 30-month old boy who reported at the hospital with severe diarrhea and vomiting, was characterised to determine the possible evolutionary origin of the rare strain. METHODS: For the sample detected as G10P[14], 10% suspension was prepared and used for RNA extraction and sequence independent amplification. The amplicons were sequenced by next-generation sequencing using the Illumina MiSeq 150 paired end method. The sequence reads were analysed using CLC Genomics Workbench 6.0 and phylogenetic trees were constructed using PhyML version 3.0. FINDINGS: The next generation sequencing and phylogenetic analyses of the 11-segmented genome of the G10P[14] strain allowed classification as G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. Six of the genes (VP1, VP2, VP3, VP6, NSP2 and NSP4) were DS-1-like. NSP1 and NSP5 were AU-1-like and NSP3 was T6, which suggests that multiple reassortment events occurred in the evolution of the strain. The phylogenetic analyses and genetic distance calculations showed that the VP7, VP4, VP6, VP1, VP3, NSP1, NSP3 and NSP4 genes clustered predominantly with bovine strains. NSP2 and VP2 genes were most closely related to simian and human strains, respectively, and NSP5 was most closely related to a rhesus strain. MAIN CONCLUSIONS: The genetic characterisation of the G10P[14] strain from Honduras suggests that its genome resulted from multiple reassortment events which were possibly mediated through interspecies transmissions.
Assuntos
Vírus Reordenados/genética , Infecções por Rotavirus/virologia , Rotavirus/genética , Pré-Escolar , Fezes/virologia , Genoma Viral , Genótipo , Honduras , Humanos , Masculino , RNA Viral/genética , Rotavirus/isolamento & purificação , Infecções por Rotavirus/diagnósticoRESUMO
We report the genome of a novel human triple-recombinant G4P[6-8_R] mono-reassortant strain identified in a stool sample from the Dominican Republic during routine facility-based rotavirus strain surveillance. The strain was designated as RVA/Human-wt/DOM/2013840364/2013/G4P[6-8_R], with a genomic constellation of G4-P[6-8_R]-I1-R1-C1-M1-(A1-A8_R)-N1-(T1-T7_R)-E1-H1. Recombinant gene segments NSP1 and NSP3 were generated as a result of recombination between genogroup 1 rotavirus A1 human strain and a genotype A8 porcine strain and between genogroup 1 rotavirus T1 human strain and a genotype T7 bovine strain, respectively. Analyses of the RNA secondary structures of gene segment VP4, NSP1 and NSP3 showed that all the recombinant regions appear to start in a loop (single-stranded) region and terminate in a stem (double-stranded) structure. Also, the VP7 gene occupied lineage VII within the G4 genotypes consisting of mostly porcine or porcine-like G4 strains, suggesting the occurrence of reassortment. The remaining gene segments clustered phylogenetically with genogroup 1 strains. This exchange of whole or partial genetic materials between rotaviruses by recombination and reassortment contributes directly to their diversification, adaptation and evolution.
Assuntos
Gastroenterite/virologia , Genoma Viral , Vírus Reordenados/genética , Recombinação Genética , Infecções por Rotavirus/virologia , Rotavirus/genética , Adaptação Fisiológica/genética , Animais , Bovinos/virologia , República Dominicana , Monitoramento Epidemiológico , Evolução Molecular , Fezes/virologia , Gastroenterite/veterinária , Variação Genética , Genômica , Genótipo , Humanos , Família Multigênica , Conformação de Ácido Nucleico , Filogenia , RNA Viral/química , RNA Viral/genética , Vírus Reordenados/classificação , Rotavirus/classificação , Rotavirus/isolamento & purificação , Análise de Sequência de DNA , Suínos/virologia , Proteínas não Estruturais Virais/genéticaRESUMO
During the 2008-2009 rotavirus season of the Centers for Disease Control and Prevention New Vaccine Surveillance Network, one case of paediatric acute gastroenteritis associated with a rotavirus G14P[24] strain was identified. This was the first detection of the genotype G14 and P[24] in humans, and the first detection of the G14P[24] combination. To gain an insight into the origins and the evolution of this strain, we determined the complete ORF sequences of all 11 genes. A majority of the genes identified were similar to the simian strain TUCH, except for the VP1 and VP7 genes that clustered only distantly with the bovine and equine strains, respectively. In addition, this strain carried AU-1-like NSP2 and NSP4 genes. Using codon-partitioning and protein-based phylogenetic approaches, we determined that the VP7 genotype of strain 2009727118 was actually G3; therefore, the proposed full genomic classification of the 2009727118 strain is G3-P[24]-I9-R2-C3-M3-A9-N3-T3-E3-H6. These findings indicate the possibility that the 2009727118 strain originated by interspecies transmission and multiple reassortment events involving human, bovine and equine rotaviruses, resulting in the introduction of some genes into the genome of simian rotaviruses. Additionally, we found evidence of mutational saturation in the third codon position of the VP7 ORF which presented an issue with homoplasy in phylogenetic analyses.
Assuntos
Antígenos Virais/genética , Proteínas do Capsídeo/genética , Genoma Viral , Genótipo , Vírus Reordenados/genética , Infecções por Rotavirus/virologia , Rotavirus/genética , Pré-Escolar , Análise por Conglomerados , Evolução Molecular , Feminino , Humanos , Dados de Sequência Molecular , Mutação , Filogenia , RNA Viral/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Recombinação Genética , Rotavirus/classificação , Rotavirus/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência de AminoácidosAssuntos
Amidas/uso terapêutico , Antivirais/uso terapêutico , Infecções por Caliciviridae/tratamento farmacológico , Mutagênese , Norovirus/genética , Pirazinas/uso terapêutico , Amidas/farmacologia , Antivirais/farmacologia , Infecções por Caliciviridae/etiologia , Doença Crônica , Imunodeficiência de Variável Comum/complicações , Diarreia/tratamento farmacológico , Diarreia/etiologia , Evolução Fatal , Humanos , Masculino , Pessoa de Meia-Idade , Mutagênese/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Norovirus/isolamento & purificação , Pirazinas/farmacologiaRESUMO
Norovirus full-genome sequencing is challenging due to sequence heterogeneity among genomes. Previous methods have relied on PCR amplification, which is problematic due to primer design, and transcriptome sequencing (RNA-Seq), which nonspecifically sequences all RNA, including host and bacterial RNA, in stool specimens. Target enrichment uses a panel of custom-designed 120-mer RNA baits that are complementary to all publicly available norovirus sequences, with multiple baits targeting each position of the genome, which overcomes the challenge of primer design. Norovirus genomes are enriched from stool RNA extracts to minimize the sequencing of nontarget RNA. SureSelect target enrichment and Illumina sequencing were used to sequence full genomes from 507 norovirus-positive stool samples with reverse transcription-real-time PCR cycle threshold (CT) values of 10 to 43. Sequencing on an Illumina MiSeq system in batches of 48 generated, on average, 81% on-target reads per sample and 100% genome coverage with >12,000-fold read depth. Samples included genotypes GI.1, GI.2, GI.3, GI.6, GI.7, GII.1, GII.2, GII.3, GII.4, GII.5, GII.6, GII.7, GII.13, GII.14, and GII.17. When outliers were accounted for, we generated >80% genome coverage for all positive samples, regardless of CT values. A total of 164 samples were tested in parallel with conventional PCR genotyping of the capsid shell domain; 164/164 samples were successfully sequenced, compared to 158/164 samples that were amplified by PCR. Four of the samples that failed capsid PCR analysis had low titers, which suggests that target enrichment is more sensitive than gel-based PCR. Two samples failed PCR due to primer mismatches; target enrichment uses multiple baits targeting each position, thus accommodating sequence heterogeneity among norovirus genomes.
Assuntos
Fezes/virologia , Genoma Viral , Norovirus/isolamento & purificação , Hibridização de Ácido Nucleico/métodos , RNA Viral/genética , Análise de Sequência de DNA/métodos , Manejo de Espécimes/métodos , Infecções por Caliciviridae/virologia , Humanos , Masculino , Norovirus/genéticaRESUMO
Affordable next-generation sequencing (NGS) technologies for hepatitis C virus (HCV) may potentially identify both viral genotype and resistance genetic motifs in the era of directly acting antiviral (DAA) therapies. This study compared the ability of high-throughput NGS methods to generate full-length, deep, HCV sequence data sets and evaluated their utility for diagnostics and clinical assessment. NGS methods using (i) unselected HCV RNA (metagenomics), (ii) preenrichment of HCV RNA by probe capture, and (iii) HCV preamplification by PCR implemented in four United Kingdom centers were compared. Metrics of sequence coverage and depth, quasispecies diversity, and detection of DAA resistance-associated variants (RAVs), mixed HCV genotypes, and other coinfections were compared using a panel of samples with different viral loads, genotypes, and mixed HCV genotypes/subtypes [geno(sub)types]. Each NGS method generated near-complete genome sequences from more than 90% of samples. Enrichment methods and PCR preamplification generated greater sequence depth and were more effective for samples with low viral loads. All NGS methodologies accurately identified mixed HCV genotype infections. Consensus sequences generated by different NGS methods were generally concordant, and majority RAVs were consistently detected. However, methods differed in their ability to detect minor populations of RAVs. Metagenomic methods identified human pegivirus coinfections. NGS provided a rapid, inexpensive method for generating whole HCV genomes to define infecting genotypes, RAVs, comprehensive viral strain analysis, and quasispecies diversity. Enrichment methods are particularly suited for high-throughput analysis while providing the genotype and information on potential DAA resistance.
Assuntos
Genoma Viral , Genótipo , Hepacivirus/genética , Hepatite C/diagnóstico , Hepatite C/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Farmacorresistência Viral , Hepacivirus/classificação , Humanos , Reino UnidoRESUMO
BACKGROUND: Rotavirus infection in adults is poorly understood and few rotavirus outbreaks among US adults have been reported in the literature. We describe an outbreak due to genotype G12P[8] rotavirus among medical students, faculty, and guests who attended a formal dinner event in April 2013. METHODS: A web-based questionnaire was distributed to event attendees to collect symptom and exposure data. A clinical case was defined as a person who developed diarrhea after attending the formal event. A laboratory-confirmed case was defined as a clinical case who attended the formal event, with rotavirus detected in stool by enzyme immunoassay or reverse transcription-polymerase chain reaction (RT-PCR) assay. RESULTS: Among 334 dinner attendees, 136 (41%) completed the web-based questionnaire; 58 (43%) respondents reported illness. Symptom onset ranged from 1 to 8 days, with peak onset 3 days after the event. In addition to diarrhea, predominant symptoms included fever (91%), abdominal pain (84%), and vomiting (49%). The median duration of illness was 2.5 days. Thirteen (22%) of 58 cases sought medical attention; none were hospitalized. Analysis of food exposures among questionnaire respondents did not identify significant associations between any specific food or drink item and illness. Stool specimens were negative for bacterial pathogens by culture and negative for norovirus by RT-PCR assay; 4 specimens were positive for rotavirus by enzyme immunoassay or PCR. G12P[8]-R1-C1-M1-A1-N1-T1-E1-H1 was identified as the causative full-genome genotype. CONCLUSIONS: Rotavirus outbreaks can occur among adults, including young adults. Health professionals should consider rotavirus as a cause of acute gastroenteritis in adults.