Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Asian J ; 15(21): 3416-3420, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32931625

RESUMO

The long-term stability of affinity-based protein labeling probes is crucial to obtain reproducible protein labeling results. However, highly stable probes generally suffer from low protein labeling efficiency and pose significant challenges when labeling low abundance native proteins in living cells. In this paper, we report that protein labeling probes based on an ortho-difluorophenyl ester reactive module exhibit long-term stability in DMSO stock solution and aqueous buffer, yet they can undergo rapid and selective labeling of native proteins. This novel electrophile can be customized with a wide range of different protein ligands and is particularly well-suited for the labeling and imaging of transmembrane proteins. With this probe design, the identity and relative levels of basal and hypoxia-induced transmembrane carbonic anhydrases were revealed by live cell imaging and in-gel fluorescence analysis. We believe that the extension of this difluorophenyl ester reactive module would allow for the specific labeling of various endogenous membrane proteins, facilitating in-depth studies of their distribution and functions in biological processes.


Assuntos
Ésteres/química , Corantes Fluorescentes/química , Hidrocarbonetos Fluorados/química , Proteínas de Membrana/análise , Coloração e Rotulagem , Linhagem Celular Tumoral , Ésteres/síntese química , Corantes Fluorescentes/síntese química , Humanos , Hidrocarbonetos Fluorados/síntese química , Estrutura Molecular , Imagem Óptica
2.
ChemistryOpen ; 8(4): 476-482, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31011505

RESUMO

Inhibitors of Apoptosis Proteins (IAPs) are conserved E3-ligases that ubiquitylate substrates to prevent apoptosis and activate the NF-kB survival pathway, often deregulated in cancer. IAPs-mediated regulation of NF-kB signaling is based on the formation of protein complexes by their type-I BIR domains. The XIAP-BIR1 domain dimerizes to bind two TAB1 monomers, leading to downstream NF-kB activation. Thus, impairment of XIAP-BIR1 dimerization could represent a novel strategy to hamper cell survival in cancer. To this aim, we previously reported NF023 as a potential inhibitor of XIAP-BIR1 dimerization. Here we present a thorough analysis of NF023 binding to XIAP-BIR1 through biochemical, biophysical and structural data. The results obtained indicate that XIAP-BIR1 dimerization interface is involved in NF023 binding, and that NF023 overall symmetry and the chemical features of its central moiety are essential for an efficient interaction with the protein. Such strategy provides original hints for the development of novel BIR1-specific compounds as pro-apoptotic agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA