Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677515

RESUMO

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Assuntos
Arginina/química , Chaperonas Moleculares/química , Proteína FUS de Ligação a RNA/química , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cátions , Metilação de DNA , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteína FUS de Ligação a RNA/metabolismo , Tirosina/química , Xenopus laevis
2.
Proc Natl Acad Sci U S A ; 120(21): e2216234120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186840

RESUMO

Neurodegenerative diseases, such as Alzheimer's disease (AD), are associated with protein misfolding and aggregation into amyloid fibrils. Increasing evidence suggests that soluble, low-molecular-weight aggregates play a key role in disease-associated toxicity. Within this population of aggregates, closed-loop pore-like structures have been observed for a variety of amyloid systems, and their presence in brain tissues is associated with high levels of neuropathology. However, their mechanism of formation and relationship with mature fibrils have largely remained challenging to elucidate. Here, we use atomic force microscopy and statistical theory of biopolymers to characterize amyloid ring structures derived from the brains of AD patients. We analyze the bending fluctuations of protofibrils and show that the process of loop formation is governed by the mechanical properties of their chains. We conclude that ex vivo protofibril chains possess greater flexibility than that imparted by hydrogen-bonded networks characteristic of mature amyloid fibrils, such that they are able to form end-to-end connections. These results explain the diversity in the structures formed from protein aggregation and shed light on the links between early forms of flexible ring-forming aggregates and their role in disease.


Assuntos
Doença de Alzheimer , Amiloide , Humanos , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Encéfalo/metabolismo , Microscopia de Força Atômica/métodos
3.
Proc Natl Acad Sci U S A ; 120(33): e2301366120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549257

RESUMO

A wide range of macromolecules can undergo phase separation, forming biomolecular condensates in living cells. These membraneless organelles are typically highly dynamic, formed reversibly, and carry out essential functions in biological systems. Crucially, however, a further liquid-to-solid transition of the condensates can lead to irreversible pathological aggregation and cellular dysfunction associated with the onset and development of neurodegenerative diseases. Despite the importance of this liquid-to-solid transition of proteins, the mechanism by which it is initiated in normally functional condensates is unknown. Here we show, by measuring the changes in structure, dynamics, and mechanics in time and space, that single-component FUS condensates do not uniformly convert to a solid gel, but rather that liquid and gel phases coexist simultaneously within the same condensate, resulting in highly inhomogeneous structures. Furthermore, our results show that this transition originates at the interface between the condensate and the dilute continuous phase, and once initiated, the gelation process propagates toward the center of the condensate. To probe such spatially inhomogeneous rheology during condensate aging, we use a combination of established micropipette aspiration experiments together with two optical techniques, spatial dynamic mapping and reflective confocal dynamic speckle microscopy. These results reveal the importance of the spatiotemporal dimension of the liquid-to-solid transition and highlight the interface of biomolecular condensates as a critical element in driving pathological protein aggregation.


Assuntos
Condensados Biomoleculares , Agregação Patológica de Proteínas , Humanos , Microscopia Confocal , Reologia , Proteína FUS de Ligação a RNA
4.
Curr Issues Mol Biol ; 46(2): 1383-1397, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392207

RESUMO

Posterior polar annular choroidal dystrophy (PPACD) is a rare ocular disorder and presents as symmetric degeneration of the retinal pigment epithelium (RPE) and the underlying choriocapillaris, encircling the retinal vascular arcades and optic disc. This condition distinctively preserves the foveal region, optic disc, and the outermost regions of the retina. Despite its distinct clinical presentation, due to the infrequency of its occurrence and the limited number of reported cases, the pathophysiology, and the genetic foundations of PPACD are still largely uncharted. This review aims to bridge this knowledge gap by investigating potential genetic contributors to PPACD, assessing current findings, and identifying genes that warrant further study. Emphasis is also placed on the crucial role of multimodal imaging in diagnosing PPACD, highlighting its importance in understanding disease pathophysiology. By analyzing existing case reports and drawing comparisons with similar retinal disorders, this paper endeavors to delineate the possible genetic correlations in PPACD, providing a foundation for future genetic research and the development of targeted diagnostic strategies.

5.
J Integr Neurosci ; 23(1): 23, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38287853

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia. While the diagnosis of PD primarily relies on clinical assessments and neurological examination, there has been growing interest in exploring non-invasive imaging techniques to aid in early detection and monitoring of the disease. In recent years, retinal imaging has emerged as a promising tool for studying PD due to the close anatomical and functional similarities between the retina and the brain. Retinal imaging methods, such as spectral domain optical coherence tomography and optical coherence tomography angiography, enable non-intrusive visualization and measurement of retinal structures and blood vessels. These techniques hold the promise of capturing alterations in retinal structure and function that could potentially mirror the underlying pathological mechanisms in PD. This review article aims to provide an overview of the current understanding of retinal changes in PD and the potential utility of retinal imaging as a diagnostic and monitoring tool.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Retina/diagnóstico por imagem , Retina/patologia , Tomografia de Coerência Óptica/métodos , Encéfalo/patologia
6.
Anal Chem ; 95(2): 1395-1401, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36547121

RESUMO

Despite mass spectrometry (MS) being proven powerful for the characterization of synthetic polymers, its potential for the analysis of single particle microplastics (MPs) is yet to be fully disclosed. To date, MPs are regarded as ubiquitous contaminants, but the limited availability of techniques that enable full characterizations of MPs results in a lack of systematic data regarding their occurrence. In this study, an atmospheric solid analysis probe (ASAP) coupled to a compact quadrupole MS is proposed for the chemical analysis of single particle microplastics, while maintaining full compatibility with complementary staining and image analysis approaches. A two-stage ASAP probe temperature program was optimized for the removal of additives and surface contaminants followed by the actual polymer characterization. The method showed specific mass spectra for a wide range of single particle MPs, including polyolefins, polyaromatics, polyacrylates, (bio)polyesters, polyamides, polycarbonates, and polyacrylonitriles. The single particle size detection limits for polystyrene MPs were found to be 30 and 5 µm in full scan and selected ion recording mode, respectively. Moreover, results are presented of a multimodal microplastic analysis approach in which filtered particles are first characterized by staining and fluorescence microscopy, followed by simple probe picking of individual particles for subsequent analysis by ASAP-MS. The method provides a full characterization of MP contamination, including particle number, particle size, particle shape, and chemical identity. The applicability of the developed multimodal method was successfully demonstrated by the analysis of MPs in bioplastic bottled water.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/química , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/análise , Espectrometria de Massas , Monitoramento Ambiental
7.
Brain ; 145(2): 632-643, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34410317

RESUMO

Aggregation of α-synuclein plays a key role in the development of Parkinson's disease. Soluble aggregates are present not only within human brain but also the CSF and blood. Characterizing the aggregates present in these biofluids may provide insights into disease mechanisms and also have potential for aiding diagnosis. We used two optical single-molecule imaging methods called aptamer DNA-PAINT and single-aggregate confocal fluorescence, together with high-resolution atomic force microscopy for specific detection and characterization of individual aggregates with intermolecular ß-sheet structure, present in the CSF and serum of 15 early stage Parkinson's disease patients compared to 10 healthy age-matched controls. We found aggregates ranging in size from 20 nm to 200 nm, in both CSF and serum. There was a difference in aggregate size distribution between Parkinson's disease and control groups with a significantly increased number of larger aggregates (longer than 150 nm) in the serum of patients with Parkinson's disease. To determine the chemical composition of the aggregates, we performed aptamer DNA-PAINT on serum following α-synuclein and amyloid-ß immunodepletion in an independent cohort of 11 patients with early stage Parkinson's disease and 10 control subjects. ß-Sheet aggregates in the serum of Parkinson's disease patients were found to consist of, on average, 50% α-synuclein and 50% amyloid-ß in contrast to 30% α-synuclein and 70% amyloid-ß in control serum [the differences in the proportion of these aggregates were statistically significant between diseased and control groups (P = 1.7 × 10-5 for each species)]. The ratio of the number of ß-sheet α-synuclein aggregates to ß-sheet amyloid-ß aggregates in serum extracted using our super-resolution method discriminated Parkinson's disease cases from controls with an accuracy of 98.2% (AUC = 98.2%, P = 4.3 × 10-5). Our data suggest that studying the protein aggregates present in serum can provide information about the disruption of protein homeostasis occurring in Parkinson's disease and warrants further investigation as a potential biomarker of disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Humanos , Doença de Parkinson/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(24): 13509-13518, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32493749

RESUMO

Protein misfolding and aggregation is the hallmark of numerous human disorders, including Alzheimer's disease. This process involves the formation of transient and heterogeneous soluble oligomers, some of which are highly cytotoxic. A major challenge for the development of effective diagnostic and therapeutic tools is thus the detection and quantification of these elusive oligomers. Here, to address this problem, we develop a two-step rational design method for the discovery of oligomer-specific antibodies. The first step consists of an "antigen scanning" phase in which an initial panel of antibodies is designed to bind different epitopes covering the entire sequence of a target protein. This procedure enables the determination through in vitro assays of the regions exposed in the oligomers but not in the fibrillar deposits. The second step involves an "epitope mining" phase, in which a second panel of antibodies is designed to specifically target the regions identified during the scanning step. We illustrate this method in the case of the amyloid ß (Aß) peptide, whose oligomers are associated with Alzheimer's disease. Our results show that this approach enables the accurate detection and quantification of Aß oligomers in vitro, and in Caenorhabditis elegans and mouse hippocampal tissues.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anticorpos/imunologia , Agregados Proteicos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Animais , Anticorpos/química , Anticorpos/metabolismo , Especificidade de Anticorpos , Caenorhabditis elegans , Modelos Animais de Doenças , Epitopos , Hipocampo/metabolismo , Camundongos , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único
9.
Biophys J ; 121(22): 4280-4298, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36230002

RESUMO

Mutations in the TP53 gene are common in cancer with the R248Q missense mutation conferring an increased propensity to aggregate. Previous p53 aggregation studies showed that, at micromolar concentrations, protein unfolding to produce aggregation-prone species is the rate-determining step. Here we show that, at physiological concentrations, aggregation kinetics of insect cell-derived full-length wild-type p53 and p53R248Q are determined by a nucleation-growth model, rather than formation of aggregation-prone monomeric species. Self-seeding, but not cross-seeding, increases aggregation rate, confirming the aggregation process as rate determining. p53R248Q displays enhanced aggregation propensity due to decreased solubility and increased aggregation rate, forming greater numbers of larger amorphous aggregates that disrupt lipid bilayers and invokes an inflammatory response. These results suggest that p53 aggregation can occur under physiological conditions, a rate enhanced by R248Q mutation, and that aggregates formed can cause membrane damage and inflammation that may influence tumorigenesis.


Assuntos
Genes p53 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Cinética , Mutação , Desdobramento de Proteína , Agregados Proteicos
10.
Chembiochem ; 22(19): 2867-2871, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34383993

RESUMO

The aggregation of α-synuclein into small soluble aggregates and then fibrils is important in the development and spreading of aggregates through the brain in Parkinson's disease. Fibrillar aggregates can grow by monomer addition and then break into fragments that could spread into neighboring cells. The rate constants for fibril elongation and fragmentation have been measured but it is not known how large an aggregate needs to be before fibril formation is thermodynamically favorable. This critical size is an important parameter controlling at what stage in an aggregation reaction fibrils can form and replicate. We determined this value to be approximately 70 monomers using super-resolution and atomic force microscopy imaging of individual α-synuclein aggregates formed in solution over long time periods. This represents the minimum size for a stable α-synuclein fibril and we hypothesis the formation of aggregates of this size in a cell represents a tipping point at which rapid replication occurs.


Assuntos
Amiloide/metabolismo , Encéfalo/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Humanos , Microscopia de Força Atômica , Tamanho da Partícula , Agregados Proteicos , Termodinâmica , alfa-Sinucleína/análise
11.
Nucleic Acids Res ; 47(18): e108, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31562528

RESUMO

The integrity of the chromatin structure is essential to every process occurring within eukaryotic nuclei. However, there are no reliable tools to decipher the molecular composition of metaphase chromosomes. Here, we have applied infrared nanospectroscopy (AFM-IR) to demonstrate molecular difference between eu- and heterochromatin and generate infrared maps of single metaphase chromosomes revealing detailed information on their molecular composition, with nanometric lateral spatial resolution. AFM-IR coupled with principal component analysis has confirmed that chromosome areas containing euchromatin and heterochromatin are distinguishable based on differences in the degree of methylation. AFM-IR distribution of eu- and heterochromatin was compared to standard fluorescent staining. We demonstrate the ability of our methodology to locate spatially the presence of anticancer drug sites in metaphase chromosomes and cellular nuclei. We show that the anticancer 'rule breaker' platinum compound [Pt[N(p-HC6F4)CH2]2py2] preferentially binds to heterochromatin, forming localized discrete foci due to condensation of DNA interacting with the drug. Given the importance of DNA methylation in the development of nearly all types of cancer, there is potential for infrared nanospectroscopy to be used to detect gene expression/suppression sites in the whole genome and to become an early screening tool for malignancy.


Assuntos
Cromossomos/ultraestrutura , DNA/ultraestrutura , Metáfase/genética , Espectrofotometria Infravermelho/métodos , Animais , Núcleo Celular/ultraestrutura , Eucromatina/ultraestrutura , Heterocromatina/ultraestrutura , Humanos , Interfase/genética
12.
Proc Natl Acad Sci U S A ; 115(28): 7230-7235, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941606

RESUMO

The formation and spreading of amyloid aggregates from the presynaptic protein α-synuclein in the brain play central roles in the pathogenesis of Parkinson's disease. Here, we use high-resolution atomic force microscopy to investigate the early oligomerization events of α-synuclein with single monomer angstrom resolution. We identify, visualize, and characterize directly the smallest elementary unit in the hierarchical assembly of amyloid fibrils, termed here single-strand protofilaments. We show that protofilaments form from the direct molecular assembly of unfolded monomeric α-synuclein polypeptide chains. To unravel protofilaments' internal structure and elastic properties, we manipulated nanomechanically these species by atomic force spectroscopy. The single-molecule scale identification and characterization of the fundamental unit of amyloid assemblies provide insights into early events underlying their formation and shed light on opportunities for therapeutic intervention at the early stages of aberrant protein self-assembly.


Assuntos
Amiloide/química , Desdobramento de Proteína , alfa-Sinucleína/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Humanos , Microscopia de Força Atômica , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , alfa-Sinucleína/metabolismo
13.
Biomacromolecules ; 21(3): 1112-1125, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32011129

RESUMO

Alzheimer's disease is associated with the deposition of the amyloid-ß peptide (Aß) into extracellular senile plaques in the brain. In vitro and in vivo observations have indicated that transthyretin (TTR) acts as an Aß scavenger in the brain, but the mechanism has not been fully resolved. We have monitored the aggregation process of Aß40 by thioflavin T fluorescence, in the presence or absence of different concentrations of preformed seed aggregates of Aß40, of wild-type tetrameric TTR (WT-TTR), and of a variant engineered to be stable as a monomer (M-TTR). Both WT-TTR and M-TTR were found to inhibit specific steps of the process of Aß40 fibril formation, which are primary and secondary nucleations, without affecting the elongation of the resulting fibrils. Moreover, the analysis shows that both WT-TTR and M-TTR bind to Aß40 oligomers formed in the aggregation reaction and inhibit their conversion into the shortest fibrils able to elongate. Using biophysical methods, TTR was found to change some aspects of its overall structure following such interactions with Aß40 oligomers, as well as with oligomers of Aß42, while maintaining its overall topology. Hence, it is likely that the predominant mechanism by which TTR exerts its protective role lies in the binding of TTR to the Aß oligomers and in inhibiting primary and secondary nucleation processes, which limits both the toxicity of Aß oligomers and the ability of the fibrils to proliferate.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Humanos , Substâncias Macromoleculares , Fragmentos de Peptídeos , Placa Amiloide , Pré-Albumina/genética
14.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630615

RESUMO

Alzheimer's disease is associated with the aggregation of the amyloid-ß peptide (Aß), resulting in the deposition of amyloid plaques in brain tissue. Recent scrutiny of the mechanisms by which Aß aggregates induce neuronal dysfunction has highlighted the importance of the Aß oligomers of this protein fragment. Because of the transient and heterogeneous nature of these oligomers, however, it has been challenging to investigate the detailed mechanisms by which these species exert cytotoxicity. To address this problem, we demonstrate here the use of rationally designed single-domain antibodies (DesAbs) to characterize the structure-toxicity relationship of Aß oligomers. For this purpose, we use Zn2+-stabilized oligomers of the 40-residue form of Aß (Aß40) as models of brain Aß oligomers and two single-domain antibodies (DesAb18-24 and DesAb34-40), designed to bind to epitopes at residues 18-24 and 34-40 of Aß40, respectively. We found that the DesAbs induce a change in structure of the Zn2+-stabilized Aß40 oligomers, generating a simultaneous increase in their size and solvent-exposed hydrophobicity. We then observed that these increments in both the size and hydrophobicity of the oligomers neutralize each other in terms of their effects on cytotoxicity, as predicted by a recently proposed general structure-toxicity relationship, and observed experimentally. These results illustrate the use of the DesAbs as research tools to investigate the biophysical and cytotoxicity properties of Aß oligomers.


Assuntos
Peptídeos beta-Amiloides/imunologia , Anticorpos/imunologia , Anticorpos/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Formação de Anticorpos/imunologia , Encéfalo/metabolismo , Desenho de Fármacos , Humanos , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Agregados Proteicos/fisiologia , Engenharia de Proteínas/métodos , Relação Estrutura-Atividade
15.
J Biol Chem ; 293(48): 18540-18558, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30185623

RESUMO

Huntington's disease is a fatal neurodegenerative disorder resulting from a CAG repeat expansion in the first exon of the gene encoding the Huntingtin protein (Htt). Phosphorylation of this protein region (Httex1) has been shown to play important roles in regulating the structure, toxicity, and cellular properties of N-terminal fragments and full-length Htt. However, increasing evidence suggests that phosphomimetic substitutions in Htt result in inconsistent findings and do not reproduce all aspects of true phosphorylation. Here, we investigated the effects of bona fide phosphorylation at Ser-13 or Ser-16 on the structure, aggregation, membrane binding, and subcellular properties of the Httex1-Q18A variant and compared these effects with those of phosphomimetic substitutions. We show that phosphorylation at either Ser-13 and/or Ser-16 or phosphomimetic substitutions at both these residues inhibit the aggregation of mutant Httex1, but that only phosphorylation strongly disrupts the amphipathic α-helix of the N terminus and prompts the internalization and nuclear targeting of preformed Httex1 aggregates. In synthetic peptides, phosphorylation at Ser-13, Ser-16, or both residues strongly disrupted the amphipathic α-helix of the N-terminal 17 residues (Nt17) of Httex1 and Nt17 membrane binding. Experiments with peptides bearing different combinations of phosphorylation sites within Nt17 revealed a phosphorylation-dependent switch that regulates the Httex1 structure, involving cross-talk between phosphorylation at Thr-3 and Ser-13 or Ser-16. Our results provide crucial insights into the role of phosphorylation in regulating Httex1 structure and function, and underscore the critical importance of identifying the enzymes responsible for regulating Htt phosphorylation, and their potential as therapeutic targets for managing Huntington's disease.


Assuntos
Núcleo Celular/metabolismo , Proteína Huntingtina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Agregados Proteicos , Animais , Células Cultivadas , Dicroísmo Circular , Proteína Huntingtina/química , Mimetismo Molecular , Mutação , Proteínas do Tecido Nervoso/química , Neurônios/metabolismo , Proteínas Nucleares/química , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Ratos Sprague-Dawley , Serina/metabolismo , Frações Subcelulares/metabolismo
16.
Arch Biochem Biophys ; 664: 134-148, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30742801

RESUMO

The development of atomic force microscopy (AFM) has opened up a wide range of novel opportunities in nanoscience and new modalities of observation in complex biological systems. AFM imaging has been widely employed to resolve the complex and heterogeneous conformational states involved in protein aggregation at the single molecule scale and shed light onto the molecular basis of a variety of human pathologies, including neurodegenerative disorders. The study of individual macromolecules at nanoscale, however, remains challenging, especially when fully quantitative information is required. In this review, we first discuss the principles of AFM with a special emphasis on the fundamental factors defining its sensitivity and accuracy. We then review the fundamental parameters and approaches to work at the limit of AFM resolution in order to perform single molecule statistical analysis of biomolecules and nanoscale protein aggregates. This single molecule statistical approach has proved to be powerful to unravel the molecular and hierarchical assembly of the misfolded species present transiently during protein aggregation, to visualise their dynamics at the nanoscale, as well to study the structural properties of amyloid-inspired functional nanomaterials.


Assuntos
Microscopia de Força Atômica/métodos , Agregados Proteicos , Imagem Individual de Molécula/métodos , Humanos
17.
Analyst ; 144(14): 4413-4424, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31215547

RESUMO

In recent years, significant advancements have been made in the understanding of the population distributions and dynamic oligomeric states of the molecular chaperone αB-crystallin and its core domain variants. In this work, we provide solution-phase evidence of the polydispersity of αB-crystallin using microfluidic methods, used for separating the oligomeric species present in solution according to their different electrophoretic mobilities on-chip in a matter of seconds. We in particular demonstrate that microfluidic high-field electrophoresis and diffusion can detect the oligomerisation of these highly dynamic molecular chaperones and characterise the dominant oligomeric species present. We thereby provide a robust microfluidic method for characterising the individual species within complex protein mixtures of biological relevance.

18.
Macromol Rapid Commun ; 40(8): e1800898, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30840348

RESUMO

Silk fibroin is a natural protein obtained from the Bombyx mori silkworm. In addition to being the key structural component in silkworm cocoons, it also has the propensity to self-assemble in vitro into hierarchical structures with desirable properties such as high levels of mechanical strength and robustness. Furthermore, it is an appealing biopolymer due to its biocompatability, low immunogenicity, and lack of toxicity, making it a prime candidate for biomedical material applications. Here, it is demonstrated that nanofibrils formed by reconstituted silk fibroin can be engineered into supramolecular microgels using a soft lithography-based microfluidic approach. Building on these results, a potential application for these protein microgels to encapsulate and release small molecules in a controlled manner is illustrated. Taken together, these results suggest that the tailored self-assembly of biocompatible and biodegradable silk nanofibrils can be used to generate functional micromaterials for a range of potential applications in the biomedical and pharmaceutical fields.


Assuntos
Fibroínas/química , Seda/química , Animais , Materiais Biocompatíveis/química , Bombyx , Géis/química , Substâncias Macromoleculares/química
19.
Biopolymers ; 109(10): e23117, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29603125

RESUMO

The aggregation process of peptides and proteins is of great relevance as it is associated with a wide range of highly debilitating disorders, including Alzheimer's and Parkinson's diseases. The natural product (-)-epigallocatechin-3-gallate (EGCG) can redirect this process away from amyloid fibrils and towards non-toxic oligomers. In this study we used nuclear magnetic resonance (NMR) spectroscopy to characterize the binding of EGCG to a set of natively structured and unstructured proteins. The results show that the binding process is dramatically dependent on the conformational properties of the protein involved, as EGCG interacts with different binding modes depending on the folding state of the protein. We used replica exchange molecular dynamics simulations to reproduce the trends observed in the NMR experiments, and analyzed the resulting samplings to identify the dominant direct interactions between EGCG and ordered and disordered proteins.


Assuntos
Catequina/análogos & derivados , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Catequina/química , Catequina/metabolismo , Humanos , Muramidase/química , Ligação Proteica , alfa-Sinucleína/química
20.
Proc Natl Acad Sci U S A ; 112(2): 378-81, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548177

RESUMO

The existence of life in extreme conditions, in particular in extraterrestrial environments, is certainly one of the most intriguing scientific questions of our time. In this report, we demonstrate the use of an innovative nanoscale motion sensor in life-searching experiments in Earth-bound and interplanetary missions. This technique exploits the sensitivity of nanomechanical oscillators to transduce the small fluctuations that characterize living systems. The intensity of such movements is an indication of the viability of living specimens and conveys information related to their metabolic activity. Here, we show that the nanomotion detector can assess the viability of a vast range of biological specimens and that it could be the perfect complement to conventional chemical life-detection assays. Indeed, by combining chemical and dynamical measurements, we could achieve an unprecedented depth in the characterization of life in extreme and extraterrestrial environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA