Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(17): E2355-62, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071111

RESUMO

Asthma is defined by airway inflammation and hyperresponsiveness, and contributes to morbidity and mortality worldwide. Although bronchodilation is a cornerstone of treatment, current bronchodilators become ineffective with worsening asthma severity. We investigated an alternative pathway that involves activating the airway smooth muscle enzyme, soluble guanylate cyclase (sGC). Activating sGC by its natural stimulant nitric oxide (NO), or by pharmacologic sGC agonists BAY 41-2272 and BAY 60-2770, triggered bronchodilation in normal human lung slices and in mouse airways. Both BAY 41-2272 and BAY 60-2770 reversed airway hyperresponsiveness in mice with allergic asthma and restored normal lung function. The sGC from mouse asthmatic lungs displayed three hallmarks of oxidative damage that render it NO-insensitive, and identical changes to sGC occurred in human lung slices or in human airway smooth muscle cells when given chronic NO exposure to mimic the high NO in asthmatic lung. Our findings show how allergic inflammation in asthma may impede NO-based bronchodilation, and reveal that pharmacologic sGC agonists can achieve bronchodilation despite this loss.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Broncodilatadores/farmacologia , Guanilato Ciclase/efeitos dos fármacos , Hidrocarbonetos Fluorados/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Antiasmáticos/uso terapêutico , Asma/enzimologia , Asma/fisiopatologia , Benzoatos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/enzimologia , Broncodilatadores/uso terapêutico , Técnicas de Cocultura , GMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Hidrocarbonetos Fluorados/uso terapêutico , Pulmão/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/efeitos dos fármacos , Músculo Liso/enzimologia , Óxido Nítrico/farmacologia , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Solubilidade , Traqueia/efeitos dos fármacos
2.
J Biol Chem ; 290(38): 23124-34, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26209637

RESUMO

Hyaluronan (HA) is a large (>1500 kDa) polysaccharide of the extracellular matrix that has been linked to severity and inflammation in asthma. During inflammation, HA becomes covalently modified with heavy chains (HC-HA) from inter-α-inhibitor (IαI), which functions to increase its avidity for leukocytes. Our murine model of allergic pulmonary inflammation suggested that HC-HA may contribute to inflammation, adversely effecting lower airway remodeling and asthma severity. Our objective was to characterize the levels of HA and HC-HA in asthmatic subjects and to correlate these levels with asthma severity. We determined the levels and distribution of HA and HC-HA (i) from asthmatic and control lung tissue, (ii) in bronchoalveolar lavage fluid obtained from non-severe and severe asthmatics and controls, and (iii) in serum and urine from atopic asthmatics after an experimental asthma exacerbation. HC-HA distribution was observed (i) in the thickened basement membrane of asthmatic lower airways, (ii) around smooth muscle cells of the asthmatic submucosa, and (iii) around reserve cells of the asthmatic epithelium. Patients with severe asthma had increased HA levels in bronchoalveolar lavage fluid that correlated with pulmonary function and nitric oxide levels, whereas HC-HA was only observed in a patient with non-severe asthma. After an experimental asthma exacerbation, serum HA was increased within 4 h after challenge and remained elevated through 5 days after challenge. Urine HA and HC-HA were not significantly different. These data implicate HA and HC-HA in the pathogenesis of asthma severity that may occur in part due to repetitive asthma exacerbations over the course of the disease.


Assuntos
alfa-Globulinas/metabolismo , Asma/metabolismo , Ácido Hialurônico/metabolismo , Pulmão/metabolismo , Miócitos de Músculo Liso/metabolismo , Mucosa Respiratória/metabolismo , Adolescente , Adulto , Animais , Asma/patologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Miócitos de Músculo Liso/patologia , Mucosa Respiratória/patologia
3.
Am J Respir Cell Mol Biol ; 44(2): 166-74, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20348207

RESUMO

Sarcoidosis is characterized by noncaseating granulomas containing CD4(+) T cells with a Th1 immunophenotype. Although the causative antigens remain unknown, independent studies noted molecular and immunologic evidence of mycobacterial virulence factors in sarcoidosis specimens. A major limiting factor in discovering new insights into the pathogenesis of sarcoidosis is the lack of an animal model. Using a distinct superoxide dismutase A peptide (sodA) associated with sarcoidosis granulomas, we developed a pulmonary model of sarcoidosis granulomatous inflammation. Mice were sensitized by a subcutaneous injection of sodA, incorporated in incomplete Freund's adjuvant (IFA). Control subjects consisted of mice with no sensitization (ConNS), sensitized with IFA only (ConIFA), or with Schistosoma mansoni eggs. Fourteen days later, sensitized mice were challenged by tail-vein injection of naked beads, covalently coupled to sodA peptides or to schistosome egg antigens (SEA). Histologic analysis revealed hilar lymphadenopathy and noncaseating granulomas in the lungs of sodA-treated or SEA-treated mice. Flow cytometry of bronchoalveolar lavage (BAL) demonstrated CD4(+) T-cell responses against sodA peptide in the sodA-sensitized mice only. Cytometric bead analysis revealed significant differences in IL-2 and IFN-γ secretion in the BAL fluid of sodA-treated mice, compared with mice that received SEA or naked beads (P = 0.008, Wilcoxon rank sum test). ConNS and ConIFA mice demonstrated no significant formation of granuloma, and no Th1 immunophenotype. The use of microbial peptides distinct for sarcoidosis reveals a histologic and immunologic profile in the murine model that correlates well with those profiles noted in human sarcoidosis, providing the framework to investigate the molecular basis for the progression or resolution of sarcoidosis.


Assuntos
Proteínas de Bactérias/imunologia , Granuloma/etiologia , Mycobacterium/enzimologia , Mycobacterium/imunologia , Sarcoidose Pulmonar/etiologia , Superóxido Dismutase/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Feminino , Granuloma/imunologia , Granuloma/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Sarcoidose Pulmonar/imunologia , Sarcoidose Pulmonar/patologia , Superóxido Dismutase/genética , Células Th1/imunologia
4.
PLoS One ; 13(7): e0200074, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29966020

RESUMO

Asthma is a chronic inflammatory disease that is known to cause changes in the extracellular matrix, including changes in hyaluronan (HA) deposition. However, little is known about the factors that modulate its deposition or the potential consequences. Asthmatics with high levels of exhaled nitric oxide (NO) are characterized by greater airway reactivity and greater evidence of airway inflammation. Based on these data and our previous work we hypothesized that excessive NO promotes the pathologic production of HA by airway smooth muscle cells (SMCs). Exposure of cultured SMCs to various NO donors results in the accumulation of HA in the form of unique, cable-like structures. HA accumulates rapidly after exposure to NO and can be seen as early as one hour after NO treatment. The cable-like HA in NO-treated SMC cultures supports the binding of leukocytes. In addition, NO produced by murine macrophages (RAW cells) and airway epithelial cells also induces SMCs to produce HA cables when grown in co-culture. The modulation of HA by NO appears to be independent of soluble guanylate cyclase. Taken together, NO-induced production of leukocyte-binding HA by SMCs provides a new potential mechanism for the non-resolving airway inflammation in asthma and suggests a key role of non-immune cells in driving the chronic inflammation of the submucosa. Modulation of NO, HA and the consequent immune cell interactions may serve as potential therapeutic targets in asthma.


Assuntos
Ácido Hialurônico/metabolismo , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Sistema Respiratório/citologia , Animais , Adesão Celular , Leucócitos/citologia , Leucócitos/metabolismo , Camundongos , Miócitos de Músculo Liso/citologia , Células RAW 264.7
5.
Free Radic Biol Med ; 82: 105-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25659933

RESUMO

Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorporation was associated with defective oligomerization of catalase, such that inactive catalase monomers and dimers accumulated in place of the mature tetrameric enzyme. We also found that GAPDH plays a key role in mediating these NO effects on the structure and activity of catalase. Moreover, the NO sensitivity of catalase maturation could be altered up or down by manipulating the cellular expression level or activity of thioredoxin-1, a known protein-SNO denitrosylase enzyme. In a mouse model of allergic inflammatory asthma, we found that lungs from allergen-challenged mice contained a greater percentage of dimeric catalase relative to tetrameric catalase in the unchallenged control, suggesting that the mechanisms described here are in play in the allergic asthma model. Together, our study shows how maturation of active catalase can be influenced by NO, S-nitrosylated GAPDH, and thioredoxin-1, and how maturation may become compromised in inflammatory conditions such as asthma.


Assuntos
Catalase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Heme/metabolismo , Óxido Nítrico/metabolismo , Tiorredoxinas/metabolismo , Animais , Antioxidantes/metabolismo , Asma/patologia , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Miócitos de Músculo Liso/metabolismo , Ovalbumina , Tiorredoxinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA