Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 384(1): 102-108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779946

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to be a global challenge due to resulting morbidity and mortality. Cardiovascular (CV) involvement is a crucial complication in coronavirus disease 2019 (COVID-19), and no strategies are available to prevent or specifically address CV events in COVID-19 patients. The identification of molecular partners contributing to CV manifestations in COVID-19 patients is crucial for providing early biomarkers, prognostic predictors, and new therapeutic targets. The current report will focus on the role of microRNAs (miRNAs) in CV complications associated with COVID-19. Indeed, miRNAs have been proposed as valuable biomarkers and predictors of both cardiac and vascular damage occurring in SARS-CoV-2 infection. SIGNIFICANCE STATEMENT: It is essential to identify the molecular mediators of coronavirus disease 2019 (COVID-19) cardiovascular (CV) complications. This report focused on the role of microRNAs in CV complications associated with COVID-19, discussing their potential use as biomarkers, prognostic predictors, and therapeutic targets.


Assuntos
COVID-19 , Doenças Cardiovasculares , MicroRNAs , SARS-CoV-2 , Humanos , Biomarcadores/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/virologia , COVID-19/complicações , MicroRNAs/metabolismo
2.
Int J Mol Sci ; 20(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959745

RESUMO

Heart failure is a complex clinical syndrome involving a multitude of neurohormonal pathways including the renin-angiotensin-aldosterone system, sympathetic nervous system, and natriuretic peptides system. It is now emerging that neurohumoral mechanisms activated during heart failure, with both preserved and reduced ejection fraction, modulate cells of the immune system. Indeed, these cells express angiotensin I receptors, adrenoceptors, and natriuretic peptides receptors. Ang II modulates macrophage polarization, promoting M2 macrophages phenotype, and this stimulation can influence lymphocytes Th1/Th2 balance. ß-AR activation in monocytes is responsible for inhibition of free oxygen radicals production, and together with α2-AR can modulate TNF-α receptor expression and TNF-α release. In dendritic cells, activation of ß2-AR inhibits IL-12 production, resulting in the inhibition of Th1 and promotion of Th2 differentiation. ANP induces the activation of secretion of superoxide anion in polymorphonucleated cells; reduces TNF-α and nitric oxide secretion in macrophages; and attenuates the exacerbated TH1 responses. BNP in macrophages can stimulate ROS production, up-regulates IL-10, and inhibits IL-12 and TNF-α release by dendritic cells, suggesting an anti-inflammatory cytokines profile induction. Therefore, different neurohormonal-immune cross-talks can determine the phenotype of cardiac remodeling, promoting either favorable or maladaptive responses. This review aims to summarize the available knowledge on neurohormonal modulation of immune responses, providing supportive rational background for further research.


Assuntos
Insuficiência Cardíaca/imunologia , Sistema Imunitário/metabolismo , Neurotransmissores/metabolismo , Animais , Humanos , Imunomodulação , Modelos Biológicos , Pesquisa Translacional Biomédica
3.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489895

RESUMO

Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiopatias/metabolismo , Miocardite/metabolismo , Miocárdio/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Suscetibilidade a Doenças , Cardiopatias/diagnóstico , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Miocardite/diagnóstico , Miocardite/etiologia , Miocárdio/patologia , Estresse Oxidativo , Transdução de Sinais
4.
Antioxidants (Basel) ; 13(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38247525

RESUMO

High glucose-induced endothelial dysfunction is an important pathological feature of diabetic vasculopathy. While genome-wide studies have identified an association between type 2 diabetes mellitus (T2DM) and increased expression of a C2 calcium-dependent domain containing 4B (C2CD4B), no study has yet explored the possible direct effect of C2CD4B on vascular function. Vascular reactivity studies were conducted using a pressure myograph, and nitric oxide and oxidative stress were assessed through difluorofluorescein diacetate and dihydroethidium, respectively. We demonstrate that high glucose upregulated both mRNA and protein expression of C2CD4B in mice mesenteric arteries in a time-dependent manner. Notably, the inhibition of C2CD4B expression by genetic knockdown efficiently prevented hyperglycemia-induced oxidative stress, endothelial dysfunction, and loss of nitric oxide (NO) bioavailability. Recombinant C2CD4B evoked endothelial dysfunction of mice mesenteric arteries, an effect associated with increased reactive oxygen species (ROS) and decreased NO production. In isolated human umbilical vein endothelial cells (HUVECs), C2CD4B increased phosphorylation of endothelial nitric oxide synthase (eNOS) at the inhibitory site Thr495 and reduced eNOS dimerization. Pharmacological inhibitors of phosphoinositide 3-kinase (PI3K), Akt, and PKCα effectively attenuated oxidative stress, NO reduction, impairment of endothelial function, and eNOS uncoupling induced by C2CD4B. These data demonstrate, for the first time, that C2CD4B exerts a direct effect on vascular endothelium via a phosphoinositide 3-kinase (PI3K)/Akt/PKCα-signaling pathway, providing a new perspective on C2CD4B as a promising therapeutic target for the prevention of oxidative stress in diabetes-induced endothelial dysfunction.

5.
Healthcare (Basel) ; 12(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39120237

RESUMO

BACKGROUND: Cardiovascular diseases (CVDs) are associated with very high rates of re-hospitalization and mortality worldwide, so the complexity of these pathologies requires frequent access to hospital facilities. The guidelines also emphasize the importance of cardiac rehabilitation (CR) programs, which have demonstrated a favorable effect on outcomes, and cardiac telerehabilitation (CTR) could represent an innovative healthcare delivery model. The aim of our review is to study how technologies used in rehabilitation have changed over time and also to understand what types of rehabilitation programs have been used in telerehabilitation. METHODS: We searched randomized controlled trials (RCTs) in three electronic databases, PubMed, Web of Science, and Scopus, from January 2015 to January 2024, using relevant keywords. Initially, 502 articles were found, and 79 duplicates were identified and eliminated with EndNote. RESULTS: In total, 16 RCTs fulfilled the pre-defined criteria, which were analyzed in our systematic review. The results showed that after CTR, there was a significant improvement in main outcome measures, as well as in relation to technological advances. CONCLUSIONS: Moreover, compared to center-based rehabilitation, CTR can offer further advantages, with better cost-effectiveness, the breakdown of geographical barriers, and the improvement of access to treatment for the female population, which is traditionally more socially committed.

6.
Bioorg Med Chem ; 21(4): 847-51, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23332368

RESUMO

Recently a series of chiral N-(phenoxyalkyl)amides have been reported as potent MT(1) and MT(2) melatonergic ligands. Some of these compounds were selected and tested for their antioxidant properties by measuring their reducing effect against oxidation of 2',7'-dichlorodihydrofluorescein (DCFH) in the DCFH-diacetate (DCFH-DA) assay. Among the tested compounds, N-[2-(3-methoxyphenoxy)propyl]butanamide displayed potent antioxidant activity that was stereoselective, the (R)-enantiomer performing as the eutomer. This compound displayed strong cytoprotective activity against H(2)O(2)-induced cytotoxicity resulting slightly more active than melatonin, and performed as Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitor, too.


Assuntos
Amidas/química , Antioxidantes/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Receptor MT1 de Melatonina/química , Receptor MT2 de Melatonina/química , Amidas/toxicidade , Antioxidantes/toxicidade , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Ligantes , Inibidores de Proteínas Quinases/toxicidade , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
7.
Biomolecules ; 13(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671552

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.


Assuntos
Ceramidas , Esfingolipídeos , Humanos , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Esfingosina/metabolismo , Pulmão/metabolismo , Ceramidases/metabolismo , Lisofosfolipídeos/metabolismo , Biomarcadores
8.
J Cardiovasc Dev Dis ; 10(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826570

RESUMO

Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the "black-box" nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients' risks and necessary therapy adjustments due to changes in disease progression and/or therapy response.

9.
J Clin Med ; 11(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35159974

RESUMO

Though the acute effects of SARS-CoV-2 infection have been extensively reported, the long-term effects are less well described. Specifically, while clinicians endure to battle COVID-19, we also need to develop broad strategies to manage post-COVID-19 symptoms and encourage those affected to seek suitable care. This review addresses the possible involvement of the lung, heart and brain in post-viral syndromes and describes suggested management of post-COVID-19 syndrome. Post-COVID-19 respiratory manifestations comprise coughing and shortness of breath. Furthermore, arrhythmias, palpitations, hypotension, increased heart rate, venous thromboembolic diseases, myocarditis and acute heart failure are usual cardiovascular events. Among neurological manifestations, headache, peripheral neuropathy symptoms, memory issues, lack of concentration and sleep disorders are most commonly observed with varying frequencies. Finally, mental health issues affecting mental abilities and mood fluctuations, namely anxiety and depression, are frequently seen. Finally, long COVID is a complex syndrome with protracted heterogeneous symptoms, and patients who experience post-COVID-19 sequelae require personalized treatment as well as ongoing support.

10.
Diagnostics (Basel) ; 12(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36292100

RESUMO

Dilated cardiomyopathy (DCM) is a complex disease affecting young adults. It is a pathological condition impairing myocardium activity that leads to heart failure and, in the most severe cases, transplantation, which is currently the only possible therapy for the disease. DCM can be attributed to many genetic determinants interacting with environmental factors, resulting in a highly variable phenotype. Due to this complexity, the early identification of causative gene mutations is an important goal to provide a genetic diagnosis, implement pre-symptomatic interventions, and predict prognosis. The advent of next-generation sequencing (NGS) has opened a new path for mutation screening, and exome sequencing provides a promising approach for identifying causal variants in known genes and novel disease-associated candidates. We analyzed the whole-exome sequencing (WES) of 15 patients affected by DCM without overloading (hypertension, valvular, or congenital heart disease) or chronic ischemic conditions. We identified 70 pathogenic or likely pathogenic variants and 1240 variants of uncertain clinical significance. Gene ontology enrichment analysis was performed to assess the potential connections between affected genes and biological or molecular function, identifying genes directly related to extracellular matrix organization, transcellular movement through the solute carrier and ATP-binding cassette transporter, and vitamin B12 metabolism. We found variants in genes implicated to a different extent in cardiac function that may represent new players in the complex genetic scenario of DCM.

11.
Cells ; 10(1)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467677

RESUMO

Insulin resistance (IRES) is a pathophysiological condition characterized by the reduced response to insulin of several tissues, including myocardial and skeletal muscle. IRES is associated with obesity, glucose intolerance, dyslipidemia, and hypertension, evolves toward type 2 diabetes, and increases the risk of developing cardiovascular diseases. Several studies designed to explore the mechanisms involved in IRES allowed the identification of a multitude of potential molecular targets. Among the most promising, G Protein Coupled Receptor Kinase type 2 (GRK2) appears to be a suitable one given its functional implications in many cellular processes. In this review, we will discuss the metabolic role of GRK2 in those conditions that are characterized by insulin resistance (diabetes, hypertension, heart failure), and the potentiality of its inhibition as a therapeutic strategy to revert both insulin resistance and its associated phenotypes.


Assuntos
Diabetes Mellitus/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertensão/metabolismo , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Inflamação , Insulina/metabolismo , Células Secretoras de Insulina , Camundongos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Peptídeos/química , Fenótipo , Fosforilação , Risco , Transdução de Sinais
12.
Genes (Basel) ; 11(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640513

RESUMO

Life expectancy has gradually grown over the last century. This has deeply affected healthcare costs, since the growth of an aging population is correlated to the increasing burden of chronic diseases. This represents the interesting challenge of how to manage patients with chronic diseases in order to improve health care budgets. Effective primary prevention could represent a promising route. To this end, precision, together with personalized medicine, are useful instruments in order to investigate pathological processes before the appearance of clinical symptoms and to guide physicians to choose a targeted therapy to manage the patient. Cardiovascular and neurodegenerative diseases represent suitable models for taking full advantage of precision medicine technologies applied to all stages of disease development. The availability of high technology incorporating artificial intelligence and advancement progress made in the field of biomedical research have been substantial to understand how genes, epigenetic modifications, aging, nutrition, drugs, microbiome and other environmental factors can impact health and chronic disorders. The aim of the present review is to address how precision and personalized medicine can bring greater clarity to the clinical and biological complexity of these types of disorders associated with high mortality, involving tremendous health care costs, by describing in detail the methods that can be applied. This might offer precious tools for preventive strategies and possible clues on the evolution of the disease and could help in predicting morbidity, mortality and detecting chronic disease indicators much earlier in the disease course. This, of course, will have a major effect on both improving the quality of care and quality of life of the patients and reducing time efforts and healthcare costs.


Assuntos
Doenças Cardiovasculares/genética , Testes Genéticos/métodos , Genômica/métodos , Doenças Neurodegenerativas/genética , Medicina de Precisão/métodos , Animais , Doenças Cardiovasculares/terapia , Humanos , Doenças Neurodegenerativas/terapia
13.
Atherosclerosis ; 256: 53-61, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011257

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is a degenerative process of the arterial wall implicating activation of macrophages and proliferation of vascular smooth muscle cells. Calcium-calmodulin dependent kinase type II (CaMKII) in vascular smooth muscle cells (VSMCs) regulates proliferation, while in macrophages, this kinase governs diapedesis, infiltration and release of extracellular matrix enzymes. We aimed at understanding the possible role of CaMKII in atherosclerosis plaques to regulate plaque evolution towards stability or instability. METHODS: Clinically defined stable and unstable plaques obtained from patients undergoing carotid end arteriectomy were processed for evaluation of CaMKs protein expression, activity and localization. RESULTS: The larger content of CaMKII was found in CD14+myeloid cells that were more abundant in unstable rather than stable plaques. To test the biological effect of activated CD14+myeloid cells, VSMCs were exposed to the conditioned medium (CM) of macrophages extracted from carotid plaques. CM induced attenuation of CaMKs expression and activity in VSMCs, leading to the reduction of VSMCs proliferation. This appears to be due to the CaMKII dependent release of cytokines. CONCLUSIONS: These results indicate a pivotal role of CaMKs in atherosclerosis by regulating activated myeloid cells on VSMCs activity. CaMKII could represent a possible target for therapeutic strategies based on macrophages specific inhibition for the stabilization of arteriosclerotic lesions.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Artérias Carótidas/enzimologia , Doenças das Artérias Carótidas/enzimologia , Placa Aterosclerótica , Idoso , Artérias Carótidas/patologia , Artérias Carótidas/cirurgia , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/cirurgia , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Endarterectomia das Carótidas , Ativação Enzimática , Feminino , Humanos , Ativação de Macrófagos , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/enzimologia , Monócitos/patologia , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Ruptura Espontânea , Fatores de Tempo
14.
Eur J Med Chem ; 116: 36-45, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27043269

RESUMO

An affinity capillary electrophoresis (ACE) method to estimate apparent dissociation constants between bovine brain calmodulin (CaM) and non-peptidic ligands was developed. The method was validated reproducing the dissociation constants of a number of well-known CaM ligands. In particular, the potent antagonist 125-C9 was ad hoc synthesized through an improved synthetic procedure. The ACE method was successfully applied to verify CaM affinity for lubeluzole, a well-known neuroprotective agent recently proved useful to potentiate the activity of anti-cancer drugs. Lubeluzole was slightly less potent than 125-C9 (Kd = 2.9 ± 0.7 and 0.47 ± 0.06 µM, respectively) and displayed Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibition (IC50 = 40 ± 1 µM). Possible binding modes of lubeluzole to CaM were explored by docking studies based on the X-ray crystal structures of several trifluoperazine-CaM complexes. An estimated dissociation constant in good agreement with the experimental one was found and the main aminoacidic residues and interactions contributing to complex formation were highlighted. The possibility that interference with Ca(2+) pathways may contribute to the previously observed chemosensitizing effects of lubeluzole on human ovarian adenocarcinoma and lung carcinoma cells are discussed.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Piperidinas/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/metabolismo , Tiazóis/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Bovinos , Humanos , Simulação de Acoplamento Molecular , Piperidinas/química , Conformação Proteica , Inibidores de Proteínas Quinases/química , Tiazóis/química
15.
PLoS One ; 11(6): e0155970, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280849

RESUMO

The discovery of the anti-proliferative activity of nelfinavir in HIV-free models has encouraged its investigation as anticancer drug. Although the molecular mechanism by which nelfinavir exerts antitumor activity is still unknown, its effects have been related to Akt inhibition. Here we tested the effects of nelfinavir on cell proliferation, viability and death in two human breast cancer cell lines and in human normal primary breast cells. To identify the mechanism of action of nelfinavir in breast cancer, we evaluated the involvement of the Akt pathway as well as the effects of nelfinavir on reactive oxygen species (ROS) production and ROS-related enzymes activities. Nelfinavir reduced breast cancer cell viability by inducing apoptosis and necrosis, without affecting primary normal breast cells. The antitumor activity of nelfinavir was related to alterations of the cell redox state, coupled with an increase of intracellular ROS production limited to cancer cells. Nelfinavir treated tumor cells also displayed a downregulation of the Akt pathway due to disruption of the Akt-HSP90 complex, and subsequent degradation of Akt. These effects resulted to be ROS dependent, suggesting that ROS production is the primary step of nelfinavir anticancer activity. The analysis of ROS-producers and ROS-detoxifying enzymes revealed that nelfinavir-mediated ROS production was strictly linked to flavoenzymes activation. We demonstrated that ROS enhancement represents the main molecular mechanism required to induce cell death by nelfinavir in breast cancer cells, thus supporting the development of new and more potent oxidizing molecules for breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Nelfinavir/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Inibidores da Protease de HIV/farmacologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
16.
Curr Diabetes Rev ; 12(2): 84-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26201430

RESUMO

Aging is one of the most important societal challenges that western societies face, as a result of longer life expectancy and reduced natality rates. Aging is a success story of our health and social systems, but raises sustainability issues that are linked to the increased need for services of older adults, due to the reduction of their independence and to the co-existence of multiple chronic diseases. The metabolic syndrome can be considered an age-related disease, since its prevalence increases with age. Current demographic trends in the population highlight aging-related dysfunctions that contribute to the onset of several metabolic diseases, and the need for innovative, effective and sustainable approaches. This review describes the correlation between the metabolic syndrome and aging, and the underlying common molecular mechanisms, focusing on calcium signaling and its crosstalks.


Assuntos
Envelhecimento , Sinalização do Cálcio , Expectativa de Vida , Síndrome Metabólica/fisiopatologia , Idoso , Humanos , Fatores de Risco
17.
Curr Diabetes Rev ; 12(2): 90-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26201429

RESUMO

The natural process of aging determinates several cardiac modifications with increased susceptibility to heart diseases and ultimately converging on development of chronic heart failure as final stage. These changes mainly include left ventricular hypertrophy, diastolic dysfunction, valvular degeneration, increased cardiac fibrosis, increased prevalence of atrial fibrillation, and decreased maximal exercise capacity, as demonstrated in several humans and animal models of aging. While different theories have been proposed to explain the natural process of aging, it is clear that most of the alterations affect mechanisms involved in cell homeostasis and maintenance. Latest research studies have in particular focused on role of mitochondrial oxidative stress, energy production and mitochondria quality control. This article reviews the central role played by this organelle in aging and the role of new molecular players involved into the progression toward heart failure and potentially susceptible of new "anti-aging" strategies.


Assuntos
Envelhecimento/metabolismo , Doenças Cardiovasculares/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Miocárdio/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Mitocôndrias/metabolismo , Estresse Oxidativo
18.
Cell Signal ; 27(2): 204-14, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446257

RESUMO

CaMKs link transient increases in intracellular Ca(2+) with biological processes. In myeloid leukemia cells, CaMKII, activated by the bcr-abl oncogene, promotes cell proliferation. Inhibition of CaMKII activity restricts cell proliferation, and correlates with growth arrest and differentiation. The mechanism by which the inhibition of CaMKII results in growth arrest and differentiation in myeloid leukemia cells is still unknown. We report that inhibition of CaMKII activity results in an upregulation of CaMKIV mRNA and protein in leukemia cell lines. Conversely, expression of CaMKIV inhibits autophosphorylation and activation of CaMKII, and elicits G0/G1cell cycle arrest,impairing cell proliferation. Furthermore, U937 cells expressing CaMKIV show elevated levels of Cdk inhibitors p27(kip1) and p16(ink4a) and reduced levels of cyclins A, B1 and D1. These findings were also confirmed in the K562 leukemic cell line. The relationship between CaMKII and CaMKIV is also observed in primary acute myeloid leukemia (AML) cells, and it correlates with their immunophenotypic profile. Indeed, immature MO/M1 AML showed increased CaMKIV expression and decreased pCaMKII, whereas highly differentiated M4/M5 AML showed decreased CaMKIV expression and increased pCaMKII levels. Our data reveal a novel cross-talk between CaMKII and CaMKIV and suggest that CaMKII suppresses the expression of CaMKIV to promote leukemia cell proliferation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Proliferação de Células , Ciclina A/metabolismo , Ciclina B1/metabolismo , Ciclina D1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Imunofenotipagem , Células K562 , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Células U937
19.
PLoS One ; 10(6): e0130477, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110816

RESUMO

AIMS: Activation of Ca2+/Calmodulin protein kinase II (CaMKII) is an important step in signaling of cardiac hypertrophy. The molecular mechanisms by which CaMKII integrates with other pathways in the heart are incompletely understood. We hypothesize that CaMKII association with extracellular regulated kinase (ERK), promotes cardiac hypertrophy through ERK nuclear localization. METHODS AND RESULTS: In H9C2 cardiomyoblasts, the selective CaMKII peptide inhibitor AntCaNtide, its penetratin conjugated minimal inhibitory sequence analog tat-CN17ß, and the MEK/ERK inhibitor UO126 all reduce phenylephrine (PE)-mediated ERK and CaMKII activation and their interaction. Moreover, AntCaNtide or tat-CN17ß pretreatment prevented PE induced CaMKII and ERK nuclear accumulation in H9C2s and reduced the hypertrophy responses. To determine the role of CaMKII in cardiac hypertrophy in vivo, spontaneously hypertensive rats were subjected to intramyocardial injections of AntCaNtide or tat-CN17ß. Left ventricular hypertrophy was evaluated weekly for 3 weeks by cardiac ultrasounds. We observed that the treatment with CaMKII inhibitors induced similar but significant reduction of cardiac size, left ventricular mass, and thickness of cardiac wall. The treatment with CaMKII inhibitors caused a significant reduction of CaMKII and ERK phosphorylation levels and their nuclear localization in the heart. CONCLUSION: These results indicate that CaMKII and ERK interact to promote activation in hypertrophy; the inhibition of CaMKII-ERK interaction offers a novel therapeutic approach to limit cardiac hypertrophy.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/biossíntese , Cardiomegalia/genética , Coração/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Animais , Butadienos/administração & dosagem , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Humanos , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , Nitrilas/administração & dosagem , Fenilefrina/metabolismo , Fosforilação , Ratos
20.
Cell Signal ; 26(10): 2167-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25007998

RESUMO

CaMKs are a widely distributed family of kinases with multiple and often cell specific effects on intracellular signal transduction pathway. In endothelial cells, it has been recognized a role for CamKII in several pathways such as eNOS activation and nitric oxide production. It is not clear though, whether CaMKII interfere with other endothelial cell functions such as ERK activation and cell proliferation. We explored this issue in primary cultured rat endothelial cells and we evaluated the effect on endothelial cell proliferation and DNA synthesis. CaMKII inhibition through Cantide, conducted into the cell through Antoennapedia (ANT-CN), showed positive effects on proliferation and H(3)-thimdine incorporation similar to insulin stimulation. Accordingly, both CaMKII pharmacological inhibition and silencing through shRNA produced activation of the p44/42 MAPK. These observations leaded to the hypothesis that CamKII could regulate p44/p42 by interfering with specific ERK phosphatases. Indeed, we found that CaMKII interacts and protect the dual specific phosphatase MKP-1 from proteasome mediated degradation while this complex is disrupted by CaMKII inhibitors. This study reveals that CaMKII, besides phosphorylation through the known ras-raf-mek pathway, can regulate also dephosphorylation of p44/p42 by modulation of MKP-1 level. This novel finding opens to a novel scenario in regulation of endothelial cell functions.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Aorta/citologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , DNA/biossíntese , Fosfatase 1 de Especificidade Dupla/antagonistas & inibidores , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Insulina/farmacologia , Leupeptinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Toxinas Marinhas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxazóis/farmacologia , Oligonucleotídeos Fosforotioatos/farmacologia , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Proteínas Proto-Oncogênicas c-raf/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA