Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Evol Appl ; 17(2): e13640, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333553

RESUMO

Evaluating salmon hatchery supplementation programs requires assessing not only program objectives but identifying potential risks to wild populations as well. Such evaluations can be hampered by difficulty in distinguishing between hatchery- and wild-born returning adults. Here, we conducted 3 years (2011-2013) of experimental hatchery supplementation of sockeye salmon in Auke Lake, Juneau, Alaska where a permanent weir allows sampling and genotyping of every returning adult (2008-2019). We identified both hatchery- and wild-born returning adults with parentage assignment, quantified the productivity (adult offspring/spawner) of hatchery spawners relative to that of wild spawners, and compared run timing, age, and size at age between hatchery- and wild-born adults. Hatchery-spawning females produced from approximately six to 50 times more returning adults than did naturally spawning females. Supplementation had no discernable effect on run timing and limited consequences for size at age, but we observed a distinct shift to younger age at maturity in the hatchery-born individuals in all three brood years. The shift appeared to be driven by hatchery-born fish being more likely to emigrate after one, rather than two, years in the lake but the cause is unknown. In cases when spawning or incubation habitat is limiting sockeye salmon production, hatchery supplementation can be effective for enhancing the number of returning adult fish but not without the risk of phenotypic change in the recipient population, which can be an undesired outcome of hatchery supplementation. This study adds to a growing body of evidence suggesting that phenotypic change within a single generation of captive spawning might be widespread in salmon hatchery programs.

2.
R Soc Open Sci ; 10(4): 221271, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035289

RESUMO

Despite the wealth of research on Pacific salmon Oncorhynchus spp. life histories there is limited understanding of the lifetime reproductive success of males that spend less time at sea and mature at a smaller size (jacks) than full-size males. Over half of returning male spawners can be jacks in some populations, so it is crucial to understand their contribution to population productivity. We quantified adult-to-adult reproductive success (RS) of jacks and their relative reproductive success (RRS) compared to full-size males in a wild population of coho salmon in the Auke Creek watershed, Juneau, Alaska. We used genetic data from nearly all individuals (approx. 8000) returning to spawn over a decade (2009-2019) to conduct parentage analysis and calculate individual RS. The average adult-to-adult RS of jacks (mean = 0.7 and s.e. = 0.1) was less than that of full-size males (mean = 1.1 and s.e. = 0.1). Jack RRS was consistently below 1.0 but ranged widely (0.23 to 0.96). Despite their lower average success, jacks contributed substantially to the population by siring 23% of the total returning adult offspring (1033 of 4456) produced between 2009 and 2015. Our results imply that jacks can affect evolutionary and population dynamics, and are relevant to the conservation and management of Pacific salmon.

3.
Evol Appl ; 16(8): 1472-1482, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37622095

RESUMO

Alternative life-history tactics are predicted to affect within-population genetic processes but have received little attention. For example, the impact of precocious males on effective population size (N e) has not been quantified directly in Pacific salmon Oncorhynchus spp., even though they can make up a large percentage of the total male spawners. We investigated the contribution of precocial males ("jacks") to N e in a naturally spawning population of Coho Salmon O. kisutch from the Auke Creek watershed in Juneau, Alaska. Mature adults that returned from 2009 to 2019 (~8000 individuals) were genotyped at 259 single-nucleotide polymorphism (SNP) loci for parentage analysis. We used demographic and genetic methods to estimate the effective number of breeders per year (N b). Jack contribution to N b was assessed by comparing values of N b calculated with and without jacks and their offspring. Over a range of N b values (108-406), the average jack contribution to N b from 2009 to 2015 was 12.9% (SE = 3.8%). Jacks consistently made up over 20% of the total male spawners. The presence of jacks did not seem to influence N b/N. The linkage disequilibrium N e estimate was lower than the demographic estimate, possibly due to immigration effects on population genetic processes: based on external marks and parentage data, we estimated that immigrant spawners produced 4.5% of all returning offspring. Our results demonstrate that jacks can influence N b and N e and can make a substantial contribution to population dynamics and conservation of threatened stocks.

4.
Mol Ecol Resour ; 19(3): 597-608, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30592374

RESUMO

Pacific salmon are a keystone resource in Alaska, generating annual revenues of well over ~US$500 million/year. Due to their anadromous life history, adult spawners distribute amongst thousands of streams, posing a huge management challenge. Currently, spawners are enumerated at just a few streams because of reliance on human counters and, rarely, sonar. The ability to detect organisms by shed tissue (environmental DNA, eDNA) promises a more efficient counting method. However, although eDNA correlates generally with local fish abundances, we do not know if eDNA can accurately enumerate salmon. Here we show that daily, and near-daily, flow-corrected eDNA rate closely tracks daily numbers of returning sockeye and coho spawners and outmigrating sockeye smolts. eDNA thus promises accurate and efficient enumeration, but to deliver the most robust numbers will need higher-resolution stream-flow data, at-least-daily sampling, and a focus on species with simple life histories, since shedding rate varies amongst jacks, juveniles, and adults.


Assuntos
DNA/genética , DNA/isolamento & purificação , Genética Populacional/métodos , Densidade Demográfica , Salmão/crescimento & desenvolvimento , Salmão/genética , Água/química , Alaska , Animais , DNA/química , Genômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA