Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
mBio ; 9(5)2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254120

RESUMO

Throughout history, the yeast Saccharomyces cerevisiae has played a central role in human society due to its use in food production and more recently as a major industrial and model microorganism, because of the many genetic and genomic tools available to probe its biology. However, S. cerevisiae has proven difficult to engineer to expand the carbon sources it can utilize, the products it can make, and the harsh conditions it can tolerate in industrial applications. Other yeasts that could solve many of these problems remain difficult to manipulate genetically. Here, we engineered the thermotolerant yeast Kluyveromyces marxianus to create a new synthetic biology platform. Using CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats with Cas9)-mediated genome editing, we show that wild isolates of K. marxianus can be made heterothallic for sexual crossing. By breeding two of these mating-type engineered K. marxianus strains, we combined three complex traits-thermotolerance, lipid production, and facile transformation with exogenous DNA-into a single host. The ability to cross K. marxianus strains with relative ease, together with CRISPR-Cas9 genome editing, should enable engineering of K. marxianus isolates with promising lipid production at temperatures far exceeding those of other fungi under development for industrial applications. These results establish K. marxianus as a synthetic biology platform comparable to S. cerevisiae, with naturally more robust traits that hold potential for the industrial production of renewable chemicals.IMPORTANCE The yeast Kluyveromyces marxianus grows at high temperatures and on a wide range of carbon sources, making it a promising host for industrial biotechnology to produce renewable chemicals from plant biomass feedstocks. However, major genetic engineering limitations have kept this yeast from replacing the commonly used yeast Saccharomyces cerevisiae in industrial applications. Here, we describe genetic tools for genome editing and breeding K. marxianus strains, which we use to create a new thermotolerant strain with promising fatty acid production. These results open the door to using K. marxianus as a versatile synthetic biology platform organism for industrial applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Engenharia Genética , Kluyveromyces/genética , Biologia Sintética/métodos , Biotecnologia , Proteína 9 Associada à CRISPR/genética , Genes Fúngicos Tipo Acasalamento/genética , Kluyveromyces/metabolismo , Metabolismo dos Lipídeos , Saccharomyces cerevisiae/genética , Temperatura , Termotolerância
2.
Cold Spring Harb Protoc ; 2016(6)2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250940

RESUMO

This protocol describes a method for CRISPR-Cas9-mediated genome editing that results in scarless and marker-free integrations of DNA into Saccharomyces cerevisiae genomes. DNA integration results from cotransforming (1) a single plasmid (pCAS) that coexpresses the Cas9 endonuclease and a uniquely engineered single guide RNA (sgRNA) expression cassette and (2) a linear DNA molecule that is used to repair the chromosomal DNA damage by homology-directed repair. For target specificity, the pCAS plasmid requires only a single cloning modification: replacing the 20-bp guide RNA sequence within the sgRNA cassette. This CRISPR-Cas9 protocol includes methods for (1) cloning the unique target sequence into pCAS, (2) assembly of the double-stranded DNA repair oligonucleotides, and (3) cotransformation of pCAS and linear repair DNA into yeast cells. The protocol is technically facile and requires no special equipment. It can be used in any S. cerevisiae strain, including industrial polyploid isolates. Therefore, this CRISPR-Cas9-based DNA integration protocol is achievable by virtually any yeast genetics and molecular biology laboratory.


Assuntos
Sistemas CRISPR-Cas , Marcação de Genes/métodos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Recombinação Genética
3.
Methods Enzymol ; 546: 473-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25398354

RESUMO

Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.


Assuntos
Sistemas CRISPR-Cas , Evolução Molecular Direcionada/métodos , Engenharia Genética/métodos , Microbiologia Industrial/métodos , Saccharomyces cerevisiae/genética , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/genética , Biblioteca Gênica , Genoma Fúngico , Dados de Sequência Molecular , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética
4.
Elife ; 32014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25139909

RESUMO

The directed evolution of biomolecules to improve or change their activity is central to many engineering and synthetic biology efforts. However, selecting improved variants from gene libraries in living cells requires plasmid expression systems that suffer from variable copy number effects, or the use of complex marker-dependent chromosomal integration strategies. We developed quantitative gene assembly and DNA library insertion into the Saccharomyces cerevisiae genome by optimizing an efficient single-step and marker-free genome editing system using CRISPR-Cas9. With this Multiplex CRISPR (CRISPRm) system, we selected an improved cellobiose utilization pathway in diploid yeast in a single round of mutagenesis and selection, which increased cellobiose fermentation rates by over 10-fold. Mutations recovered in the best cellodextrin transporters reveal synergy between substrate binding and transporter dynamics, and demonstrate the power of CRISPRm to accelerate selection experiments and discoveries of the molecular determinants that enhance biomolecule function.


Assuntos
Cromossomos/ultraestrutura , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biblioteca Gênica , Alelos , Celobiose/química , Fermentação , Engenharia Genética , Técnicas Genéticas , Genoma Fúngico , Mutagênese , Mutação , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética
5.
Mol Cell ; 11(3): 721-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12667454

RESUMO

Methylation of histone proteins is one of their many modifications that affect chromatin structure and regulate gene expression. Methylation of histone H3 on lysines 4 and 79, catalyzed by the Set1-containing complex COMPASS and Dot1p, respectively, is required for silencing of expression of genes located near chromosome telomeres in yeast. We report that the Paf1 protein complex, which is associated with the elongating RNA polymerase II, is required for methylation of lysines 4 and 79 of histone H3 and for silencing of expression of a telomere-associated gene. We show that the Paf1 complex is required for recruitment of the COMPASS methyltransferase to RNA polymerase II and that the subunits of these complexes interact physically and genetically. Collectively, our results suggest that the Paf1 complex is required for histone H3 methylation, therefore linking transcriptional elongation to chromatin methylation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Western Blotting , Cromatina/metabolismo , Metilação de DNA , Eletroforese em Gel de Poliacrilamida , Inativação Gênica , Histona Metiltransferases , Lisina/química , Metilação , Metiltransferases/química , Modelos Genéticos , Mutação , Testes de Precipitina , Ligação Proteica , Proteínas Metiltransferases , Proteoma , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo
6.
Mol Cell ; 12(6): 1565-76, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14690608

RESUMO

Deletions of three yeast genes, SET2, CDC73, and DST1, involved in transcriptional elongation and/or chromatin metabolism were used in conjunction with genetic array technology to screen approximately 4700 yeast deletions and identify double deletion mutants that produce synthetic growth defects. Of the five deletions interacting genetically with all three starting mutations, one encoded the histone H2A variant Htz1 and three encoded components of a novel 13 protein complex, SWR-C, containing the Snf2 family ATPase, Swr1. The SWR-C also copurified with Htz1 and Bdf1, a TFIID-interacting protein that recognizes acetylated histone tails. Deletions of the genes encoding Htz1 and seven nonessential SWR-C components caused a similar spectrum of synthetic growth defects when combined with deletions of 384 genes involved in transcription, suggesting that Htz1 and SWR-C belong to the same pathway. We show that recruitment of Htz1 to chromatin requires the SWR-C. Moreover, like Htz1 and Bdf1, the SWR-C promotes gene expression near silent heterochromatin.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição , Adenosina Trifosfatases/genética , Cromossomos Fúngicos , DNA Helicases , Proteínas de Ligação a DNA/genética , Deleção de Genes , Perfilação da Expressão Gênica , Genes Fúngicos , Histonas/genética , Humanos , Substâncias Macromoleculares , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo
7.
Cell ; 113(7): 919-33, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12837249

RESUMO

Predictive analysis using publicly available yeast functional genomics and proteomics data suggests that many more proteins may be involved in biogenesis of ribonucleoproteins than are currently known. Using a microarray that monitors abundance and processing of noncoding RNAs, we analyzed 468 yeast strains carrying mutations in protein-coding genes, most of which have not previously been associated with RNA or RNP synthesis. Many strains mutated in uncharacterized genes displayed aberrant noncoding RNA profiles. Ten factors involved in noncoding RNA biogenesis were verified by further experimentation, including a protein required for 20S pre-rRNA processing (Tsr2p), a protein associated with the nuclear exosome (Lrp1p), and a factor required for box C/D snoRNA accumulation (Bcd1p). These data present a global view of yeast noncoding RNA processing and confirm that many currently uncharacterized yeast proteins are involved in biogenesis of noncoding RNA.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico , Mutação/genética , RNA não Traduzido/biossíntese , Ribonucleoproteínas/biossíntese , Leveduras/metabolismo , Células Cultivadas , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Precursores de RNA/biossíntese , Precursores de RNA/genética , RNA Nucleolar Pequeno/biossíntese , RNA Nucleolar Pequeno/genética , RNA de Transferência/biossíntese , RNA de Transferência/genética , RNA não Traduzido/genética , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA