Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021398

RESUMO

African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts.IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development.


Assuntos
Vírus da Febre Suína Africana/enzimologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA Mensageiro/metabolismo , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Chlorocebus aethiops , Deleção de Genes , Interações Hospedeiro-Patógeno , Ligação Proteica , Pirofosfatases/genética , Pirofosfatases/metabolismo , Proteínas Ribossômicas/metabolismo , Sus scrofa , Células Vero , Proteínas Virais/genética , Nudix Hidrolases
2.
PLoS Pathog ; 8(6): e1002754, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719252

RESUMO

African swine fever (ASF) is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV), which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V), and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na(+)/H(+) exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.


Assuntos
Vírus da Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Pinocitose/fisiologia , Internalização do Vírus , Febre Suína Africana/metabolismo , Animais , Western Blotting , Chlorocebus aethiops , Citometria de Fluxo , Interações Hospedeiro-Parasita/fisiologia , Microscopia Confocal , Microscopia Eletrônica , Suínos/virologia , Células Vero
3.
Nat Commun ; 14(1): 5159, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620322

RESUMO

The initial steps of B-cell acute lymphoblastic leukemia (B-ALL) development usually pass unnoticed in children. Several preclinical studies have shown that exposure to immune stressors triggers the transformation of preleukemic B cells to full-blown B-ALL, but how this takes place is still a longstanding and unsolved challenge. Here we show that dysregulation of innate immunity plays a driving role in the clonal evolution of pre-malignant Pax5+/- B-cell precursors toward leukemia. Transcriptional profiling reveals that Myd88 is downregulated in immune-stressed pre-malignant B-cell precursors and in leukemic cells. Genetic reduction of Myd88 expression leads to a significant increase in leukemia incidence in Pax5+/-Myd88+/- mice through an inflammation-dependent mechanism. Early induction of Myd88-independent Toll-like receptor 3 signaling results in a significant delay of leukemia development in Pax5+/- mice. Altogether, these findings identify a role for innate immunity dysregulation in leukemia, with important implications for understanding and therapeutic targeting of the preleukemic state in children.


Assuntos
Linfoma de Burkitt , Leucemia , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animais , Camundongos , Células Precursoras de Linfócitos B , Fator 88 de Diferenciação Mieloide/genética , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Imunidade Inata , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
4.
Cancer Res ; 82(6): 1098-1109, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131871

RESUMO

Preventing development of childhood B-cell acute lymphoblastic leukemia (B-ALL), a disease with devastating effects, is a longstanding and unsolved challenge. Heterozygous germline alterations in the PAX5 gene can lead to B-ALL upon accumulation of secondary mutations affecting the JAK/STAT signaling pathway. Preclinical studies have shown that this malignant transformation occurs only under immune stress such as exposure to infectious pathogens. Here we show in Pax5+/- mice that transient, early-life administration of clinically relevant doses of ruxolitinib, a JAK1/2 inhibitor, significantly mitigates the risk of B-ALL following exposure to infection; 1 of 29 animals treated with ruxolitinib developed B-ALL versus 8 of 34 untreated mice. Ruxolitinib treatment preferentially targeted Pax5+/- versus wild-type B-cell progenitors and exerted unique effects on the Pax5+/- B-cell progenitor transcriptional program. These findings provide the first in vivo evidence for a potential strategy to prevent B-ALL development. SIGNIFICANCE: JAK/STAT inhibition suppresses tumorigenesis in a B-ALL-susceptible mouse model, presenting a novel approach to prevent B-ALL onset.


Assuntos
Janus Quinases , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Humanos , Janus Quinases/genética , Camundongos , Fator de Transcrição PAX5/genética , Fatores de Transcrição STAT , Transdução de Sinais/genética
5.
PLoS Pathog ; 5(8): e1000562, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19714237

RESUMO

African swine fever virus (ASFV), like other complex DNA viruses, deploys a variety of strategies to evade the host's defence systems, such as inflammatory and immune responses and cell death. Here, we analyse the modifications in the translational machinery induced by ASFV. During ASFV infection, eIF4G and eIF4E are phosphorylated (Ser1108 and Ser209, respectively), whereas 4E-BP1 is hyperphosphorylated at early times post infection and hypophosphorylated after 18 h. Indeed, a potent increase in eIF4F assembly is observed in ASFV-infected cells, which is prevented by rapamycin treatment. Phosphorylation of eIF4E, eIF4GI and 4E-BP1 is important to enhance viral protein production, but is not essential for ASFV infection as observed in rapamycin- or CGP57380-treated cells. Nevertheless, eIF4F components are indispensable for ASFV protein synthesis and virus spread, since eIF4E or eIF4G depletion in COS-7 or Vero cells strongly prevents accumulation of viral proteins and decreases virus titre. In addition, eIF4F is not only activated but also redistributed within the viral factories at early times of infection, while eIF4G and eIF4E are surrounding these areas at late times. In fact, other components of translational machinery such as eIF2alpha, eIF3b, eIF4E, eEF2 and ribosomal P protein are enriched in areas surrounding ASFV factories. Notably, the mitochondrial network is polarized in ASFV-infected cells co-localizing with ribosomes. Thus, translation and ATP synthesis seem to be coupled and compartmentalized at the periphery of viral factories. At later times after ASFV infection, polyadenylated mRNAs disappear from the cytoplasm of Vero cells, except within the viral factories. The distribution of these pools of mRNAs is similar to the localization of viral late mRNAs. Therefore, degradation of cellular polyadenylated mRNAs and recruitment of the translation machinery to viral factories may contribute to the inhibition of host protein synthesis, facilitating ASFV protein production in infected cells.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Fatores de Iniciação em Eucariotos/metabolismo , Animais , Células COS , Caspase 3/metabolismo , Chlorocebus aethiops , Imuno-Histoquímica , Mitocôndrias/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas Ribossômicas/metabolismo , Células Vero
6.
J Virol ; 83(2): 969-80, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19004945

RESUMO

During a viral infection, reprogramming of the host cell gene expression pattern is required to establish an adequate antiviral response. The transcriptional coactivators p300 and CREB binding protein (CBP) play a central role in this regulation by promoting the assembly of transcription enhancer complexes to specific promoters of immune and proinflammatory genes. Here we show that the protein A238L encoded by African swine fever virus counteracts the host cell inflammatory response through the control of p300 transactivation during the viral infection. We demonstrate that A238L inhibits the expression of the inflammatory regulators cyclooxygenase-2 (COX-2) and tumor necrosis factor alpha (TNF-alpha) by preventing the recruitment of p300 to the enhanceosomes formed on their promoters. Furthermore, we report that A238L inhibits p300 activity during the viral infection and that its amino-terminal transactivation domain is essential in the A238L-mediated inhibition of the inflammatory response. Importantly, we found that the residue serine 384 of p300 is required for the viral protein to accomplish its inhibitory function and that ectopically expressed PKC-theta completely reverts this inhibition, thus indicating that this signaling pathway is disrupted by A238L during the viral infection. Furthermore, we show here that A238L does not affect PKC-theta enzymatic activity, but the molecular mechanism of this viral inhibition relies on the lack of interaction between PKC-theta and p300. These findings shed new light on how viruses alter the host cell antiviral gene expression pattern through the blockade of the p300 activity, which represents a new and sophisticated viral mechanism to evade the inflammatory and immune defense responses.


Assuntos
Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/fisiologia , Proteína p300 Associada a E1A/antagonistas & inibidores , Proteína Quinase C/antagonistas & inibidores , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , Ciclo-Oxigenase 2/biossíntese , Ligação Proteica , Mapeamento de Interação de Proteínas , Fator de Necrose Tumoral alfa/biossíntese , Células Vero
7.
Virus Res ; 265: 150-155, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30922809

RESUMO

An outbreak in the Caucasus in 2007 initiated the spread of ASFV through Russia and Eastern Europe, subsequently affecting Ukraine, Belarus, Poland, the Baltic States, the Czech Republic, Moldova, Romania and Bulgaria. The declaration of outbreaks in China and Central Europe in August 2018, definitely confirms the serious threat that the extension of ASF represents for the global swine industry and the environment. Despite the efforts of several groups to generate a vaccine against ASFV, currently only control and eradication measures are available based mainly on the early detection and implementation of strict sanitary procedures, including the mass slaughter of animals, both domestic and wild boar. However, the rapid spread of the disease shows that these actions are clearly insufficient to control the current pandemic situation, and the development of a vaccine is urgently required.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Surtos de Doenças/veterinária , Vacinas Virais/imunologia , Animais , China , Surtos de Doenças/prevenção & controle , Europa (Continente) , Federação Russa , Sus scrofa/virologia , Suínos , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas Virais/imunologia
8.
Vaccines (Basel) ; 7(1)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696015

RESUMO

African swine fever virus (ASFV) causes high morbidity and mortality in swine (Sus scrofa), for which there is no commercially available vaccine. Recent outbreaks of the virus in Trans-Caucasus countries, Eastern Europe, Belgium and China highlight the urgent need to develop effective vaccines against ASFV. Previously, we evaluated the immunogenicity of a vaccination strategy designed to test various combinations of ASFV antigens encoded by DNA plasmids and recombinant proteins with the aim to activate both humoral and cellular immunity. Based on our previous results, the objective of this study was to test the combined DNA-protein vaccine strategy using a cocktail of the most immunogenic antigens against virulent ASFV challenge. Pigs were vaccinated three times with a cocktail that included ASFV plasmid DNA (CD2v, p72, p32, +/-p17) and recombinant proteins (p15, p35, p54, +/-p17). Three weeks after the third immunization, all pigs were challenged with the virulent ASFV Armenia 2007 strain. The results showed that vaccinated pigs were not protected from ASFV infection or disease. Compared to the non-vaccinated controls, earlier onset of clinical signs, viremia, and death were observed for the vaccinated animals following virulent ASFV challenge. ASFV induced pathology was also enhanced in the vaccinated pigs. Furthermore, while the vaccinated pigs developed antigen-specific antibodies, immunized pig sera at the time of challenge lacked the capacity to neutralize virus, and instead was observed to enhance ASFV infection in vitro. The results of this work points to a putative immune enhancement mechanism involved in ASFV pathogenesis that warrants further investigation. This pilot study provides insight for the selection of appropriate combinations of ASFV antigens for the development of a rationally-designed, safe, and efficacious vaccine for ASF.

9.
Vet Immunol Immunopathol ; 208: 34-43, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30712790

RESUMO

African swine fever virus (ASFV) causes serious disease in domestic pigs for which there is no vaccine currently available. ASFV is a large DNA virus that encodes for more than 150 proteins, thus making the identification of viral antigens that induce a protective immune response difficult. Based on the functional roles of several ASFV proteins found in previous studies, we selected combinations of ASFV recombinant proteins and pcDNAs-expressing ASFV genes, to analyze their ability to induce humoral and cellular immune responses in pigs. Pigs were immunized using a modified prime-boost approach with combinations of previously selected viral DNA and proteins, resulting in induction of antibodies and specific cell-mediated immune response, measured by IFN-γ ELISpots. The ability of antibodies from pigs immunized with various combinations of ASFV-specific antigens to neutralize infection in vitro, and antigen-specific activation of the cellular immune response were analyzed.


Assuntos
Febre Suína Africana/prevenção & controle , DNA Viral/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , DNA Viral/administração & dosagem , ELISPOT , Imunidade Celular , Interferon gama/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Sus scrofa , Suínos , Proteínas Virais/administração & dosagem , Vacinas Virais/administração & dosagem
11.
Vaccine ; 36(19): 2694-2704, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29609966

RESUMO

The risk of spread of African swine fever virus (ASFV) from Russia and Caucasian areas to several EU countries has recently emerged, making it imperative to improve our knowledge and defensive tools against this important pathogen. The ASFV genome encodes many genes which are not essential for virus replication but are known to control host immune evasion, such as NFκB and the NFAT regulator A238L, the apoptosis inhibitor A224L, the MHC-I antigen presenting modulator EP153R, and the A276R gene, involved in modulating type I IFN. These genes are hypothesized to be involved in virulence of the genotype I parental ASFV NH/P68. We here describe the generation of putative live attenuated vaccines (LAV) prototypes by constructing recombinant NH/P68 viruses lacking these specific genes and containing specific markers.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas/farmacologia , Vacinas Virais/farmacologia , Vírus da Febre Suína Africana/patogenicidade , Animais , Células COS , Chlorocebus aethiops , Interações Hospedeiro-Patógeno/genética , Mutação , Suínos , Vacinas Atenuadas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Virulência/genética
12.
Vaccines (Basel) ; 5(4)2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29117102

RESUMO

African Swine Fever Virus (ASFV) causes a serious swine disease that is endemic in Africa and Sardinia and presently spreading in Russia and neighboring countries, including Poland and recently, the Czech Republic. This uncontrolled dissemination is a world-wide threat, as no specific protection or vaccine is available. ASFV is a very complex icosahedral, enveloped virus about 200 nm in diameter, which infects several members of pigs. The virus enters host cells by receptor-mediated endocytosis that depends on energy, vacuolar pH and temperature. The specific receptor(s) and attachment factor(s) involved in viral entry are still unknown, although macropinocytosis and clathrin-dependent mechanisms have been proposed. After internalization, ASFV traffics through the endolysosomal system. The capsid and inner envelope are found in early endosomes or macropinosomes early after infection, colocalizing with EEA1 and Rab5, while at later times they co-localize with markers of late endosomes and lysosomes, such as Rab7 or Lamp 1. A direct relationship has been established between the maturity of the endosomal pathway and the progression of infection in the cell. Finally, ASFV uncoating first involves the loss of the outer capsid layers, and later fusion of the inner membrane with endosomes, releasing the nude core into the cytosol.

13.
Sci Rep ; 7(1): 10369, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871180

RESUMO

African swine fever virus (ASFV) is a highly pathogenic, double-stranded DNA virus with a marked tropism for cells of the monocyte-macrophage lineage, affecting swine species and provoking severe economic losses and health threats. In the present study, four established porcine cell lines, IPAM-WT, IPAM-CD163, C∆2+ and WSL, were compared to porcine alveolar macrophage (PAM) in terms of surface marker phenotype, susceptibility to ASFV infection and virus production. The virulent ASFV Armenia/07, E70 or the naturally attenuated NHV/P68 strains were used as viral models. Cells expressed only low levels of specific receptors linked to the monocyte/macrophage lineage, with low levels of infection overall, with the exception of WSL, which showed more efficient production of strain NHV/P68 but not of strains E70 and Armenia/07.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Fenótipo , Febre Suína Africana/imunologia , Febre Suína Africana/metabolismo , Animais , Biomarcadores , Linhagem Celular , Regulação Viral da Expressão Gênica , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Suínos , Carga Viral , Replicação Viral
14.
Virus Res ; 173(1): 58-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23154157

RESUMO

Throughout a viral infection, the infected cell reprograms the gene expression pattern in order to establish a satisfactory antiviral response. African swine fever virus (ASFV), like other complex DNA viruses, sets up a number of strategies to evade the host's defense systems, such as apoptosis, inflammation and immune responses. The capability of the virus to persist in its natural hosts and in domestic pigs, which recover from infection with less virulent isolates, suggests that the virus displays effective mechanisms to escape host defense systems. ASFV has been described to regulate the activation of several transcription factors, thus regulating the activation of specific target genes during ASFV infection. Whereas some reports have concerned about anti-apoptotic ASFV genes and the molecular mechanisms by which ASFV interferes with inducible gene transcription and immune evasion, less is yet known regarding how ASFV regulates the translational machinery in infected cells, although a recent report has shown a mechanism for favored expression of viral genes based on compartmentalization of viral mRNA and ribosomes with cellular translation factors within the virus factory. The viral mechanisms involved both in the regulation of host genes transcription and in the control of cellular protein synthesis are summarized in this review.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Biossíntese de Proteínas , Transcrição Gênica , Proteínas Virais/biossíntese , Replicação Viral , Animais , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA