Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2321919121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713625

RESUMO

Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/ß-catenin signaling along the AP axis and, functions synergistically with the ß-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.


Assuntos
Planárias , Via de Sinalização Wnt , Quinases Ativadas por p21 , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Planárias/fisiologia , Planárias/genética , Planárias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regeneração , Transativadores/metabolismo , Transativadores/genética
2.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826365

RESUMO

Trimethylation of histone H3 lysine 4 (H3K4me3) correlates strongly with gene expression in many different organisms, yet the question of whether it plays a causal role in transcriptional activity remains unresolved. Although H3K4me3 does not directly affect chromatin accessibility, it can indirectly affect genome accessibility by recruiting the ATP-dependent chromatin remodeling complex NuRF (Nucleosome Remodeling Factor). The largest subunit of NuRF, BPTF/NURF301, binds H3K4me3 specifically and recruits the NuRF complex to loci marked by this modification. Studies have shown that the strength and duration of BPTF binding likely also depends on additional chromatin features at these loci, such as lysine acetylation and variant histone proteins. However, the exact details of this recruitment mechanism vary between studies and have largely been tested in vitro. Here, we use stem cells isolated directly from live planarian animals to investigate the role of BPTF in regulating chromatin accessibility in vivo. We find that BPTF operates at gene promoters and is most effective at facilitating transcription at genes marked by Set1-dependent H3K4me3 peaks, which are significantly broader than those added by the lysine methyltransferase MLL1/2. Moreover, BPTF is essential for planarian stem cell biology and its loss of function phenotype mimics that of Set1 knockdown. Together, these data suggest that BPTF and H3K4me3 are important mediators of both transcription and in vivo stem cell function.

3.
Cell Rep ; 43(6): 112787, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810650

RESUMO

Protein aggregation, which can sometimes spread in a prion-like manner, is a hallmark of neurodegenerative diseases. However, whether prion-like aggregates form during normal brain aging remains unknown. Here, we use quantitative proteomics in the African turquoise killifish to identify protein aggregates that accumulate in old vertebrate brains. These aggregates are enriched for prion-like RNA-binding proteins, notably the ATP-dependent RNA helicase DDX5. We validate that DDX5 forms aggregate-like puncta in the brains of old killifish and mice. Interestingly, DDX5's prion-like domain allows these aggregates to propagate across many generations in yeast. In vitro, DDX5 phase separates into condensates. Mutations that abolish DDX5 prion propagation also impair the protein's ability to phase separate. DDX5 condensates exhibit enhanced enzymatic activity, but they can mature into inactive, solid aggregates. Our findings suggest that protein aggregates with prion-like properties form during normal brain aging, which could have implications for the age-dependency of cognitive decline.


Assuntos
Envelhecimento , Encéfalo , Príons , Agregados Proteicos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Envelhecimento/metabolismo , Príons/metabolismo , Camundongos , RNA Helicases DEAD-box/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA