Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 602(7898): 671-675, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016199

RESUMO

The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa1-3. It has since spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of around 32 mutations in spike-located mostly in the N-terminal domain and the receptor-binding domain-that may enhance viral fitness and enable antibody evasion. Here we isolated an infectious Omicron virus in Belgium from a traveller returning from Egypt. We examined its sensitivity to nine monoclonal antibodies that have been clinically approved or are in development4, and to antibodies present in 115 serum samples from COVID-19 vaccine recipients or individuals who have recovered from COVID-19. Omicron was completely or partially resistant to neutralization by all monoclonal antibodies tested. Sera from recipients of the Pfizer or AstraZeneca vaccine, sampled five months after complete vaccination, barely inhibited Omicron. Sera from COVID-19-convalescent patients collected 6 or 12 months after symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titres 6-fold to 23-fold lower against Omicron compared with those against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and, to a large extent, vaccine-elicited antibodies. However, Omicron is neutralized by antibodies generated by a booster vaccine dose.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Evasão da Resposta Imune/imunologia , Imunização Secundária , SARS-CoV-2/imunologia , Adulto , Anticorpos Monoclonais/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , Bélgica , COVID-19/imunologia , COVID-19/transmissão , ChAdOx1 nCoV-19/administração & dosagem , ChAdOx1 nCoV-19/imunologia , Convalescença , Feminino , Humanos , Masculino , Mutação , Testes de Neutralização , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Viagem
2.
Nature ; 596(7871): 276-280, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34237773

RESUMO

The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1-5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2-also termed the Delta variant-is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , Convalescença , Evasão da Resposta Imune/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/epidemiologia , Vacinas contra COVID-19/administração & dosagem , Epitopos/química , Epitopos/genética , Epitopos/imunologia , França , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
3.
Crit Care ; 27(1): 240, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330512

RESUMO

BACKGROUND: Benefit of early awake prone positioning for COVID-19 patients hospitalised in medical wards and who need oxygen therapy remains to be demonstrated. The question was considered at the time of COVID-19 pandemic to avoid overloading the intensive care units. We aimed to determine whether prone position plus usual care could reduce the rate of non-invasive ventilation (NIV) or intubation or death as compared to usual care alone. METHODS: In this multicentre randomised clinical trial, 268 patients were randomly assigned to awake prone position plus usual care (N = 135) or usual care alone (N = 132). The primary outcome was the proportion of patients who underwent NIV or intubation or died within 28 days. Main secondary outcomes included the rates of NIV, of intubation or death, within 28 days. RESULTS: Median time spent each day in the prone position within 72 h of randomisation was 90 min (IQR 30-133). The proportion of NIV or intubation or death within 28 days was 14.1% (19/135) in the prone position group and 12.9% (17/132) in the usual care group [odds ratio adjusted for stratification (aOR) 0.43; 95% confidence interval (CI) 0.14-1.35]. The probability of intubation, or intubation or death (secondary outcomes) was lower in the prone position group than in the usual care group (aOR 0.11; 95% CI 0.01-0.89 and aOR 0.09; 95% CI 0.01-0.76, respectively) in the whole study population and in the prespecified subgroup of patients with SpO2 ≥ 95% on inclusion (aOR 0.11; 95% CI 0.01-0.90, and aOR 0.09; 95% CI 0.03-0.27, respectively). CONCLUSIONS: Awake prone position plus usual care in COVID-19 patients in medical wards did not decrease the composite outcome of need for NIV or intubation or death. Trial registration ClinicalTrials.gov Identifier: NCT04363463 . Registered 27 April 2020.


Assuntos
COVID-19 , Ventilação não Invasiva , Insuficiência Respiratória , Humanos , COVID-19/terapia , Decúbito Ventral , Pandemias , Respiração Artificial , Insuficiência Respiratória/terapia
4.
Clin Infect Dis ; 70(9): 1973-1979, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31350995

RESUMO

BACKGROUND: Increasingly, people living with human immunodeficiency virus (HIV) benefit from lower drug regimens (LDRs). Exploring viral genital shedding during LDRs is crucial to ensure their safety. METHODS: We pooled genital sub-studies from 2 clinical trials in this area. Patients were randomized 1:1 to continue abacavir/lamivudine/dolutegravir or switch to dolutegravir (MONCAY trial), or to continue tenofovir/emtricitabine + a third agent or switch to tenofovir/emtricitabine (TRULIGHT trial). Participants whose plasma HIV-RNA remained <50 copies/mL had sperm or cervicovaginal lavage collected between Weeks 24 and 48. HIV-RNA and HIV-DNA were amplified by ultrasensitive polymerase chain reaction. The main objective was to measure the proportion of participants who had no detectable HIV in genital fluids, both according to each strategy and then in an aggregated analysis (LDR versus triple therapies). RESULTS: There were 64 participants (35 males, 29 females) included: 16 received dual therapies and 16 received triple therapies in TRULIGHT; and 16 received monotherapies and 16 received triple therapies in MONCAY. In TRULIGHT, 13/15 (87%) of evaluable participants on dual therapy had no detectable HIV in their genital fluid, versus 14/15 (93%) under triple therapy (P = 1.0). In MONCAY, these figures were 12/15 (80%) on monotherapy versus 13/16 (81%) on triple therapy (P = 1.0). In the pooled analysis, a similar proportion of participants in the LDR and triple therapy groups had no detectable HIV: 25/30 (83%) and 27/31 (87%), respectively (P = .73). CONCLUSIONS: There was no evidence of increased HIV-RNA and/or -DNA shedding in the genital fluids of people who maintained undetectable plasma HIV-RNA during LDRs. CLINICAL TRIALS REGISTRATION: NCT02302547 and NCT02596334.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/uso terapêutico , DNA/uso terapêutico , Emtricitabina/uso terapêutico , Feminino , Genitália , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Lamivudina/uso terapêutico , Masculino , RNA/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Carga Viral
5.
Photochem Photobiol Sci ; 11(5): 803-11, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22362130

RESUMO

This paper presents energy transfer occurring in small organically modified core-shell nanoparticles (core lanthanide oxide, shell polysiloxane) (diameter < 10 nm) conjugated with photosensitizers designed for photodynamic therapy applications. These nanoparticles covalently encapsulate a photosensitizing PDT drug in different concentrations. Stable dispersions of the nanoparticles were prepared and the photophysical properties of the photosensitizers were studied and compared to those of the photosensitizers in solution. Increasing the photosensitizer concentration in the nanoparticles was not found to cause any changes in the absorption properties while fluorescence and singlet oxygen quantum yields decreased. As a possible explanation, we have suggested that both long distance energy transfer such as FRET and self-quenching could occur into the nanoparticles. A simple "trend" model of this kind of energy transfer complies with results of experiments on steady state fluorescence and singlet oxygen luminescence.


Assuntos
Nanopartículas/química , Fármacos Fotossensibilizantes/química , Portadores de Fármacos/química , Transferência de Energia , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Humanos , Lantânio/química , Luminescência , Modelos Químicos , Neoplasias/tratamento farmacológico , Óxidos/química , Processos Fotoquímicos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Siloxanas/química , Oxigênio Singlete/química , Espectrometria de Fluorescência
6.
Med ; 3(12): 838-847.e3, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36228619

RESUMO

BACKGROUND: Since early 2022, Omicron BA.1 has been eclipsed by BA.2, which was in turn outcompeted by BA.5, which displays enhanced antibody escape properties. METHODS: Here, we evaluated the duration of the neutralizing antibody (Nab) response, up to 18 months after Pfizer BNT162b2 vaccination, in individuals with or without BA.1/BA.2 breakthrough infection. We measured neutralization of the ancestral D614G lineage, Delta, and Omicron BA.1, BA.2, and BA.5 variants in 300 sera and 35 nasal swabs from 27 individuals. FINDINGS: Upon vaccination, serum Nab titers were decreased by 10-, 15-, and 25-fold for BA.1, BA.2, and BA.5, respectively, compared with D614G. We estimated that, after boosting, the duration of neutralization was markedly shortened from 11.5 months with D614G to 5.5 months with BA.5. After breakthrough, we observed a sharp increase of Nabs against Omicron subvariants, followed by a plateau and a slow decline after 5-6 months. In nasal swabs, infection, but not vaccination, triggered a strong immunoglobulin A (IgA) response and a detectable Omicron-neutralizing activity. CONCLUSIONS: BA.5 spread is partly due to abbreviated vaccine efficacy, particularly in individuals who were not infected with previous Omicron variants. FUNDING: Work in O.S.'s laboratory is funded by the Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la Recherche Médicale (FRM), ANRS, the Vaccine Research Institute (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), ANR/FRM Flash Covid PROTEO-SARS-CoV-2, ANR Coronamito, and IDISCOVR, Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (grant no. ANR-10-LABX-62-IBEID), HERA european funding and the NIH PICREID (grant no U01AI151758).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , Infecções Irruptivas , Anticorpos Neutralizantes
7.
BMJ Open ; 12(7): e060320, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803621

RESUMO

INTRODUCTION: COVID-19 is responsible of severe hypoxaemia and acute respiratory distress syndrome (ARDS). Prone positioning improves oxygenation and survival in sedated mechanically patients with ARDS not related to COVID-19. Awake prone positioning is a simple and safe technique which improves oxygenation in non-intubated COVID-19 patients. We hypothesised that early prone positioning in COVID-19 patients breathing spontaneously in medical wards could decrease the rates of intubation or need for noninvasive ventilation or death. METHODS AND ANALYSIS: PROVID-19 is an investigator-initiated, prospective, multicentre randomised, controlled, superiority trial comparing awake prone positioning to standard of care in hypoxaemic COVID-19 patients in 20 medical wards in France and Monaco. Patients are randomised to receive either awake prone position plus usual care or usual care alone with stratification on centres, body mass index and severity of hypoxaemia.The study objective is to compare the rate of treatment failure defined as a composite endpoint comprising the need for non-invasive ventilation (at two pressure levels) or for intubation or death, between the intervention group (awake prone position plus usual care) and the usual care (usual care alone) group at 28 days. ETHICS AND DISSEMINATION: The protocol and amendments have been approved by the ethics committees (Comité de protection des personnes Ouest VI, France, no 1279 HPS2 and Comité Consultatif d'Ethique en matière de Recherche Biomédicale, Monaco, no 2020.8894 AP/jv), and patients are included after written informed consent. The results will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04363463.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Hipóxia/prevenção & controle , Estudos Multicêntricos como Assunto , Oxigênio , Quartos de Pacientes , Decúbito Ventral , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Padrão de Cuidado , Vigília
8.
Cell Rep Med ; 3(12): 100850, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36450283

RESUMO

The emergence of Omicron sublineages impacts the therapeutic efficacy of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs). Here, we evaluate neutralization and antibody-dependent cellular cytotoxicity (ADCC) activities of 6 therapeutic mAbs against Delta, BA.2, BA.4, and BA.5. The Omicron subvariants escape most antibodies but remain sensitive to bebtelovimab and cilgavimab. Consistent with their shared spike sequence, BA.4 and BA.5 display identical neutralization profiles. Sotrovimab is the most efficient at eliciting ADCC. We also analyze 121 sera from 40 immunocompromised individuals up to 6 months after infusion of Ronapreve (imdevimab + casirivimab) or Evusheld (cilgavimab + tixagevimab). Sera from Ronapreve-treated individuals do not neutralize Omicron subvariants. Evusheld-treated individuals neutralize BA.2 and BA.5, but titers are reduced. A longitudinal evaluation of sera from Evusheld-treated patients reveals a slow decay of mAb levels and neutralization, which is faster against BA.5. Our data shed light on antiviral activities of therapeutic mAbs and the duration of effectiveness of Evusheld pre-exposure prophylaxis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos , Antivirais/uso terapêutico
9.
EBioMedicine ; 77: 103934, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290827

RESUMO

BACKGROUND: SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in the UK and had been detected in dozens of countries. It has since then been supplanted by Omicron. The AY.4.2 spike displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. METHODS: We compared the Delta and the AY.4.2 spikes, by assessing their binding to antibodies and ACE2 and their fusogenicity. We studied the sensitivity of an authentic AY.4.2 viral isolate to neutralizing antibodies. FINDINGS: The AY.4.2 spike exhibited similar binding to all the antibodies and sera tested, and similar fusogenicity and binding to ACE2 than the ancestral Delta spike. The AY.4.2 virus was slightly less sensitive than Delta to neutralization by a panel of monoclonal antibodies; noticeably, the anti-RBD Imdevimab showed incomplete neutralization. Sensitivity of AY.4.2 to sera from vaccinated individuals was reduced by 1.3 to 3-fold, when compared to Delta. INTERPRETATION: Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The spread of AY.4.2 was not due to major changes in spike fusogenicity or ACE2 binding, but more likely to a partially reduced neutralization sensitivity. FUNDING: The work was funded by Institut Pasteur, Fondation pour la Recherche Médicale, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, ANRS, the Vaccine Research Institute, Labex IBEID, ANR/FRM Flash Covid PROTEO-SARS-CoV-2 and IDISCOVR.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
10.
Nat Med ; 28(6): 1297-1302, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322239

RESUMO

The severe acute respiratory syndrome coronavirus 2 Omicron BA.1 sublineage has been supplanted in many countries by the BA.2 sublineage. BA.2 differs from BA.1 by about 21 mutations in its spike. In this study, we first compared the sensitivity of BA.1 and BA.2 to neutralization by nine therapeutic monoclonal antibodies (mAbs). In contrast to BA.1, BA.2 was sensitive to cilgavimab, partly inhibited by imdevimab and resistant to adintrevimab and sotrovimab. We then analyzed sera from 29 immunocompromised individuals up to 1 month after administration of Ronapreve (casirivimab and imdevimab) and/or Evusheld (cilgavimab and tixagevimab) antibody cocktails. All treated individuals displayed elevated antibody levels in their sera, which efficiently neutralized the Delta variant. Sera from Ronapreve recipients did not neutralize BA.1 and weakly inhibited BA.2. Neutralization of BA.1 and BA.2 was detected in 19 and 29 out of 29 Evusheld recipients, respectively. As compared to the Delta variant, neutralizing titers were more markedly decreased against BA.1 (344-fold) than BA.2 (nine-fold). We further report four breakthrough Omicron infections among the 29 individuals, indicating that antibody treatment did not fully prevent infection. Collectively, BA.1 and BA.2 exhibit noticeable differences in their sensitivity to therapeutic mAbs. Anti-Omicron neutralizing activity of Ronapreve and, to a lesser extent, that of Evusheld is reduced in patients' sera.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Humanos , Glicoproteínas de Membrana/genética , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
11.
EClinicalMedicine ; 38: 100993, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34222849

RESUMO

BACKGROUND: Tenofovir and emtricitabine interfere with the SARS CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). Several cohorts reported that people treated by tenofovir disoproxil fumarate and emtricitabine are less likely to develop SARS CoV-2 infection and related severe COVID-19. METHODS: We conducted a pilot randomized, open-label, controlled, phase 2 trial at two hospitals in France. Eligible patients were consecutive outpatients (aged ≥18 years) with RT-PCR-confirmed SARS-CoV-2 infection and an interval from symptom onset to enrolment of 7 days or less. Patients were randomly assigned in a 1:1 ratio to receive oral tenofovir disoproxil fumarate and emtricitabine (2 pills on day 1 followed by 1 pill per day on days 2-7) or the standard of care. The primary and secondary endpoints were SARS-CoV-2 viral clearance from baseline assessed by cycle threshold (Ct) RT-PCR on nasopharyngeal swab collected at day 4 and day 7, respectively. A higher Ct corresponds to a lower SARS CoV-2 viral burden. Other endpoints were the time to recovery and the number of adverse events. This trial is registered with ClinicalTrials.gov, NCT04685512. FINDINGS: From November, 20th 2020 to March, 19th 2021, 60 patients were enrolled and randomly assigned to a treatment group (30 to tenofovir disoproxil fumarate and emtricitabine and 30 to standard of care). The median number of days from symptom onset to inclusion was 4 days (IQR 3-5) in both groups. Amongst patients who received tenofovir disoproxil fumarate, the difference from standard of care in the increase in Ct RT-PCR from baseline was 2.3 (95% confidence interval [-0.6 to 5.2], p = 0.13) at day 4 and 2.9 (95% CI [0.1 to 5.2], p = 0.044) at day 7. At day 7, 6/30 in the tenofovir disoproxil fumarate and emtricitabine group and 3/30 in the standard of care group reported no COVID-related symptoms. Adverse events included 11 cases of gastrointestinal side effects (grade ≤ 2), three of which leaded to drug discontinuation. Three patients had COVID-19 related hospitalisation, no participant died. INTERPRETATION: In this pilot study of outpatients adult with recent non-severe COVID-19, tenofovir disoproxil fumarate plus emtricitabine appeared to accelerate the natural clearance of nasopharyngeal SARS-CoV-2 viral burden. These findings support the conduct of larger trials of tenofovir-based therapies for the prevention and early treatment of COVID-19. FUNDING: No external funding.

12.
Nat Med ; 27(5): 917-924, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33772244

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 and B.1.351 variants were first identified in the United Kingdom and South Africa, respectively, and have since spread to many countries. These variants harboring diverse mutations in the gene encoding the spike protein raise important concerns about their immune evasion potential. Here, we isolated infectious B.1.1.7 and B.1.351 strains from acutely infected individuals. We examined sensitivity of the two variants to SARS-CoV-2 antibodies present in sera and nasal swabs from individuals infected with previously circulating strains or who were recently vaccinated, in comparison with a D614G reference virus. We utilized a new rapid neutralization assay, based on reporter cells that become positive for GFP after overnight infection. Sera from 58 convalescent individuals collected up to 9 months after symptoms, similarly neutralized B.1.1.7 and D614G. In contrast, after 9 months, convalescent sera had a mean sixfold reduction in neutralizing titers, and 40% of the samples lacked any activity against B.1.351. Sera from 19 individuals vaccinated twice with Pfizer Cominarty, longitudinally tested up to 6 weeks after vaccination, were similarly potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G. Neutralizing titers increased after the second vaccine dose, but remained 14-fold lower against B.1.351. In contrast, sera from convalescent or vaccinated individuals similarly bound the three spike proteins in a flow cytometry-based serological assay. Neutralizing antibodies were rarely detected in nasal swabs from vaccinees. Thus, faster-spreading SARS-CoV-2 variants acquired a partial resistance to neutralizing antibodies generated by natural infection or vaccination, which was most frequently detected in individuals with low antibody levels. Our results indicate that B1.351, but not B.1.1.7, may increase the risk of infection in immunized individuals.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Convalescença , Reações Cruzadas , Humanos , Testes de Neutralização , Sensibilidade e Especificidade , Vacinação
13.
PLoS One ; 15(9): e0237694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941461

RESUMO

BACKGROUND: The SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus 2) is responsible for the infectious respiratory disease called COVID-19 (COronaVIrus Disease 2019). In response to the growing COVID-19 pandemic, point-of-care (POC) tests have been developed to detect specific antibodies, IgG and IgM, to SARS-CoV-2 virus in human whole blood. We conducted a prospective observational study to evaluate the performance of two POC tests, COVID-PRESTO® and COVID-DUO®, compared to the gold standard, RT-PCR (real-time reverse transcriptase polymerase chain reaction). METHODS: RT-PCR testing of SARS-Cov-2 was performed from nasopharyngeal swab specimens collected in adult patients visiting the infectious disease department at the hospital (Orléans, France). Capillary whole blood (CWB) samples from the fingertip taken at different time points after onset of the disease were tested with POC tests. The specificity and sensitivity of the rapid test kits compared to test of reference (RT-PCR) were calculated. RESULTS: Among 381 patients with symptoms of COVID-19 who went to the hospital for a diagnostic, 143 patients were RT-PCR negative. Results of test with POC tests were all negative for these patients, indicating a specificity of 100% for both POC tests. In the RT-PCR positive subgroup (n = 238), 133 patients were tested with COVID-PRESTO® and 129 patients were tested with COVID-DUO® (24 patients tested with both). The further the onset of symptoms was from the date of collection, the greater the sensitivity. The sensitivity of COVID-PRESTO® test ranged from 10.00% for patients having experienced their 1st symptoms from 0 to 5 days ago to 100% in patients where symptoms had occurred more than 15 days before the date of tests. For COVID-DUO® test, the sensitivity ranged from 35.71% [0-5 days] to 100% (> 15 days). CONCLUSION: COVID-PRESTO® and DUO® POC tests turned out to be very specific (none false positive) and to be sensitive enough after 15 days from onset of symptom. These easy to use IgG/IgM combined test kits are the first ones allowing a screening with CWB sample, by typing from a finger prick. These rapid tests are particularly interesting for screening in low resource settings.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Imunoensaio/métodos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Pneumonia Viral/diagnóstico , Kit de Reagentes para Diagnóstico , Adulto , Idoso , Especificidade de Anticorpos , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Capilares , Infecções por Coronavirus/sangue , Dedos/irrigação sanguínea , Humanos , Pessoa de Meia-Idade , Nasofaringe/virologia , Pandemias , Pneumonia Viral/sangue , Testes Imediatos , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Sensibilidade e Especificidade , Adulto Jovem
16.
PLoS One ; 7(11): e48617, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144911

RESUMO

Nanoparticles are widely suggested as targeted drug-delivery systems. In photodynamic therapy (PDT), the use of multifunctional nanoparticles as photoactivatable drug carriers is a promising approach for improving treatment efficiency and selectivity. However, the conventional cytotoxicity assays are not well adapted to characterize nanoparticles cytotoxic effects and to discriminate early and late cell responses. In this work, we evaluated a real-time label-free cell analysis system as a tool to investigate in vitro cyto- and photocyto-toxicity of nanoparticles-based photosensitizers compared with classical metabolic assays. To do so, we introduced a dynamic approach based on real-time cell impedance monitoring and a mathematical model-based analysis to characterize the measured dynamic cell response. Analysis of real-time cell responses requires indeed new modeling approaches able to describe suited use of dynamic models. In a first step, a multivariate analysis of variance associated with a canonical analysis of the obtained normalized cell index (NCI) values allowed us to identify different relevant time periods following nanoparticles exposure. After light irradiation, we evidenced discriminant profiles of cell index (CI) kinetics in a concentration- and light dose-dependent manner. In a second step, we proposed a full factorial design of experiments associated with a mixed effect kinetic model of the CI time responses. The estimated model parameters led to a new characterization of the dynamic cell responses such as the magnitude and the time constant of the transient phase in response to the photo-induced dynamic effects. These parameters allowed us to characterize totally the in vitro photodynamic response according to nanoparticle-grafted photosensitizer concentration and light dose. They also let us estimate the strength of the synergic photodynamic effect. This dynamic approach based on statistical modeling furnishes new insights for in vitro characterization of nanoparticles-mediated effects on cell proliferation with or without light irradiation.


Assuntos
Sistemas Computacionais , Modelos Biológicos , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Humanos , Cinética , Luz , Modelos Lineares , Análise Multivariada , Fatores de Tempo
17.
Theranostics ; 2(9): 889-904, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23082101

RESUMO

Photodynamic therapy (PDT) is an emerging theranostic modality for various cancer as well as non-cancer diseases. Its efficiency is mainly based on a selective accumulation of PDT and imaging agents in tumor tissue. The vascular effect is widely accepted to play a major role in tumor eradication by PDT. To promote this vascular effect, we previously demonstrated the interest of using an active- targeting strategy targeting neuropilin-1 (NRP-1), mainly over-expressed by tumor angiogenic vessels. For an integrated vascular-targeted PDT with magnetic resonance imaging (MRI) of cancer, we developed multifunctional gadolinium-based nanoparticles consisting of a surface-localized tumor vasculature targeting NRP-1 peptide and polysiloxane nanoparticles with gadolinium chelated by DOTA derivatives on the surface and a chlorin as photosensitizer. The nanoparticles were surface-functionalized with hydrophilic DOTA chelates and also used as a scaffold for the targeting peptide grafting. In vitro investigations demonstrated the ability of multifunctional nanoparticles to preserve the photophysical properties of the encapsulated photosensitizer and to confer photosensitivity to MDA-MB-231 cancer cells related to photosensitizer concentration and light dose. Using binding test, we revealed the ability of peptide-functionalized nanoparticles to target NRP-1 recombinant protein. Importantly, after intravenous injection of the multifunctional nanoparticles in rats bearing intracranial U87 glioblastoma, a positive MRI contrast enhancement was specifically observed in tumor tissue. Real-time MRI analysis revealed the ability of the targeting peptide to confer specific intratumoral retention of the multifunctional nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA