Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9419, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658697

RESUMO

The thermal spring-fed Lake Pețea located in NW Romania southeast of the city of Oradea harbors a unique endemic warm water biota. It is the only location in Europe where thermal water endemic melanopsid Microcolpia parreyssii (Philippi, 1847) lived along with the highly endangered warm-water relict neritid Theodoxus prevostianus. Lake Petea's evolution was mainly controlled by major climate-driven hydrological changes also seen in regional records. The hydrological changes were mainly controlled by varying input of thermal water due to recurring increased/decreased recharge of the underground karst water system. The driving factor was warming connected to the interstadial GI 1 increasing recharge by melting of regional ice sheets in the Late Glacial. Conversely, during the Younger Dryas (H0) and the Holocene increasing/decreasing moisture availability was in control. Low stands created multiple bottlenecks reducing genetic variability seen in the appearance of extreme morphologies during next rapid climate melioration. The studied gastropods responded mostly similarly to changes controlling the availability of elements in shell construction and habitat reduction leading to changes in shape, density, size. Periods of lower lake levels and reduced warm water input are characterized by the emergence of elongated tightly coiled shells while globular, compressed loosely coiled shells develop at times of warmer water provision and increased Mg availability. In size there is a contrasting trend. Namely globose Th. prevostianus shells are larger than the elongated ones. Conversely globose, compressed Microcolpia are generally smaller than their elongated spindle-shaped counterparts. In this sense the development of dwarf morphotypes in warmer water habitats is characteristic of Lake Pețea melanopsids. This type of dwarfism i.e. the reduction of shell size is lacking though in Lake Pețea neritids. Our findings also confirm the presence of various ecophenotypes of Microcolpia in the pond degrading our endemic species Mi. parreyssii to a variety of Mi. daudebartii.

2.
J Morphol ; 285(6): e21739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38794996

RESUMO

Understanding the underlying reasons for phenotypic plasticity and resulting morphological disparity is one of the key topics of evolutionary research. The phenotypic plasticity of extant and fossil melanopsids has been widely documented. Yet millennial-resolution, well-dated records from small aquatic habitats harboring endemics are scarce. The thermal spring-fed Lake Pețea is an ice age refugia harboring a unique endemic warm-water fauna. Subfossil melanopsids display incredible morphological variability from smooth to keeled, elongated to ribbed, shouldered forms. Numerous morphotypes have been considered as individual taxa with a fluent succession from the smooth elongated to the ribbed, shouldered types. This study presents an extensive morphometric analysis of subfossil melanopsids (ca. 3500 specimens) derived from stratified samples with an independent chronology. The aim was to separate morphotypes for investigations of temporal morphological disparity. Our results challenge the widely accepted hypothesis that proposes the evolution of shouldered, compressed, ribbed shells through a two-step process from smooth elongated spindle-shaped shells. Instead, it suggests that the subfossil shells belong to two distinct taxa present throughout the available stratigraphic data. The main components of shape variation, shape globularity, and shell coiling seem allometry-related. Ribs, striation, and keels appear randomly. High-spired spindle-shaped forms were considered to represent specimens of Microcolpia daudebartii hazayi. Bulkier low-spired and shouldered specimens represent phenotypes of Mi. parreyssii parreyssii. The collective and random distribution of morphotypes from the early stages of the lake's history also refutes the idea of a continuous transformation of the elongated forms into compressed, shouldered ones. Rather points to multiple events and environmental stimuli triggering development. Melanopsids appear in Late Glacial horizons, with Theodoxus prevostianus preferring temperatures above 23°C which may indicate the subordinate presence of hot water microhabitats in cooler waters.


Assuntos
Fósseis , Gastrópodes , Lagos , Animais , Gastrópodes/anatomia & histologia , Gastrópodes/fisiologia , Fósseis/anatomia & histologia , Refúgio de Vida Selvagem , Fenótipo , Evolução Biológica , Exoesqueleto/anatomia & histologia , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA