Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 448, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783206

RESUMO

BACKGROUND: Proper flower development is essential for plant reproduction, a crucial aspect of the plant life cycle. This process involves precisely coordinating transcription factors, enzymes, and epigenetic modifications. DNA methylation, a ubiquitous and heritable epigenetic mechanism, is pivotal in regulating gene expression and shaping chromatin structure. Fagopyrum esculentum demonstrates anti-hypertensive, anti-diabetic, anti-inflammatory, cardio-protective, hepato-protective, and neuroprotective properties. However, the heteromorphic heterostyly observed in F. esculentum poses a significant challenge in breeding efforts. F. tataricum has better resistance to high altitudes and harsh weather conditions such as drought, frost, UV-B radiation damage, and pests. Moreover, F. tataricum contains significantly higher levels of rutin and other phenolics, more flavonoids, and a balanced amino acid profile compared to common buckwheat, being recognised as functional food, rendering it an excellent candidate for functional food applications. RESULTS: This study aimed to compare the DNA methylation profiles between the Pin and Thrum flower components of F. esculentum, with those of self-fertile species of F. tataricum, to understand the potential role of this epigenetic mechanism in Fagopyrum floral development. Notably, F. tataricum flowers are smaller than those of F. esculentum (Pin and Thrum morphs). The decline in DNA methylation levels in the developed open flower components, such as petals, stigmas and ovules, was consistent across both species, except for the ovule in the Thrum morph. Conversely, Pin and Tartary ovules exhibited a minor decrease in DNA methylation levels. The highest DNA methylation level was observed in Pin stigma from closed flowers, and the most significant decrease was in Pin stigma from open flowers. In opposition, the nectaries of open flowers exhibited higher levels of DNA methylation than those of closed flowers. The decrease in DNA methylation might correspond with the downregulation of genes encoding methyltransferases. CONCLUSIONS: Reduced overall DNA methylation and the expression of genes associated with these epigenetic markers in fully opened flowers of both species may indicate that demethylation is necessary to activate the expression of genes involved in floral development.


Assuntos
Metilação de DNA , Fagopyrum , Flores , Fagopyrum/genética , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Epigênese Genética , Regulação da Expressão Gênica de Plantas
2.
Methods Mol Biol ; 2791: 71-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532093

RESUMO

Immunocytochemical studies of the cell wall are used to visualize specific epitopes of pectins, arabinogalactan proteins, hemicelluloses, extensins, and other wall components using specific primary antibodies. This reaction, combined with calcofluor staining, allows to comprehend how the cell wall is rebuilt during the protoplast culture. In this protocol, the method of immunostaining using antibodies against cell wall components based on Fagopyrum esculentum and Fagopyrum tataricum protoplasts is described.


Assuntos
Fagopyrum , Parede Celular , Pectinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA