Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 38(14)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28488402

RESUMO

Pulsed-laser polymerization combined with polymer analysis by NMR and size-exclusion chromatography is used to study the radical copolymerization kinetics of isoprene (IP) with glycidyl methacrylate (GMA). The copolymer is characterized by a close-to-alternating microstructure, with the addition of IP leading to a significant decrease in the composition-averaged propagation rate coefficient. A rigorous fitting strategy is developed to fit a mixed penultimate model to the data, with the selectivity of the IP, but not the GMA, macroradical dependent on the penultimate unit.


Assuntos
Butadienos/química , Compostos de Epóxi/química , Hemiterpenos/química , Metacrilatos/química , Pentanos/química , Polimerização , Cromatografia em Gel , Cinética , Espectroscopia de Ressonância Magnética
2.
J Mater Chem B ; 12(24): 5823-5837, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38757473

RESUMO

Liposome-based technologies derived from lipids and polymers (e.g., PEGylated liposomes) have been recognized because of their applications in nanomedicine. However, since such systems represent myriad challenges and may promote immune responses, investigation of new biomaterials is mandatory. Here, we report on a biophysical investigation of liposomes decorated with bioconjugated copolymers in the presence (or absence) of amantadine (an antiviral medication). First, copolymers of poly(N,N-dimethylacrylamide-co-fluoresceinacrylate-co-acrylic acid-N-succinimide ester)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM) containing a fluorescence label were biofunctionalized with short peptides that resemble the sequence of the loops 220 and 130 of the binding receptor of the hemagglutinin (HA) protein of the influenza A virus. Then, the bioconjugated copolymers were self-assembled along with liposomes composed of 1,2 dimyristoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol (MSC). These biohybrid systems, with and without amantadine, were systematically characterized using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryoTEM). Finally, the systems were tested in an in vitro study to evaluate cytotoxicity and direct immunofluorescence in Madin Darbin Canine Kidney (MDCK) cells. The biohybrid systems displayed long-term stability, thermo-responsiveness, hydrophilic-hydrophobic features, and fluorescence properties and were presumable endowed with cell targeting properties intrinsically integrated into the amino acid sequences of the utilized peptides, which indeed turn them into promising nanodevices for biomedical applications.


Assuntos
Amantadina , Lipossomos , Lipossomos/química , Amantadina/química , Polímeros/química , Animais , Antivirais/química , Antivirais/farmacologia , Células Madin Darby de Rim Canino , Cães
3.
Polymers (Basel) ; 15(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38006191

RESUMO

The particle size distribution (PSD) in emulsion polymerization (EP) has been modeled in the past using either the pseudo bulk (PB) or the 0-1/0-1-2 approaches. There is some controversy on the proper type of model to be used to simulate the experimental PSDs, which are apparently broader than the theoretical ones. Additionally, the numerical technique employed to solve the model equations, involving hyperbolic partial differential equations (PDEs) with moving and possibly steep fronts, has to be precise and robust, which is not a trivial matter. A deterministic kinetic model for the PSD evolution of ab initio EP of vinyl monomers was developed to investigate these issues. The model considers three phases, micellar nucleation, and particles that can contain n≥0 radicals. Finite volume (FV) and weighted-residual methods are used to solve the system of PDEs and compared; their limitations are also identified. The model was validated by comparing predictions with data of monomer conversion and PSD for the batch emulsion homopolymerization of styrene (Sty) and methyl methacrylate (MMA) using sodium dodecyl sulfate (SDS)/potassium persulfate (KPS) at 60 °C, as well as the copolymerization of Sty-MMA (50/50; mol/mol) at 50 and 60 °C. It is concluded that the PB model has a structural problem when attempting to adequately represent PSDs with steep fronts, so its use is discouraged. On the other hand, there is no generalized evidence of the need to add a stochastic term to enhance the PSD prediction of EP deterministic models.

4.
Polymers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432962

RESUMO

The implementation of a dialysis method for the simultaneous purification of different polymer materials in a commercially available automated parallel synthesizer (APS) is discussed. The efficiency of this "unattended" automated parallel dialysis (APD) method was investigated by means of proton nuclear magnetic resonance (1H-NMR) measurements, which confirmed that the method enables the removal of up to 99% of the unreacted monomer derived from the synthesis of the corresponding polymers in the APS. Size-exclusion chromatography (SEC) revealed that the molar mass and molar mass distribution of the investigated polymers did not undergo significant changes after the application of the APD method. The method discussed herein can be regarded as a good alternative to the "unattended" and reliable purification of polymer libraries prepared in APS. This method may be useful for overcoming current limitations of high-throughput/-output (HT/O) synthesis of polymer libraries, where purification of the generated materials currently represents a significant constraint for establishing fully automated experimental workflows necessary to advance towards a full digitalization of research and development of new polymers for diverse applications.

5.
Polymers (Basel) ; 14(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406321

RESUMO

A mathematical model for the kinetics, composition and molar mass development of the bulk reversible addition-fragmentation chain transfer (RAFT) copolymerization of glycidyl methacrylate (GMA) and styrene (St), at several GMA molar feed fractions at 103 °C, in the presence of 2-cyano isopropyl dodecyl trithiocarbonate as the RAFT agent and 1,1'-azobis(cyclohexane carbonitrile), as the initiator, is presented. The copolymerization proceeded in a controlled manner and dispersities of the copolymers remained narrow even at high conversions. Experimental data and calculated profiles of conversion versus time, composition versus conversion and molar mass development for the RAFT copolymerization of St and GMA agreed well for all conditions tested, including high-conversion regions. The kinetic rate constants associated with the RAFT- related reactions and diffusion-controlled parameters were properly estimated using a weighted nonlinear multivariable regression procedure. The mathematical model developed in this study may be used as an aid in the design and upscaling of industrial RAFT polymerization processes.

6.
Polymers (Basel) ; 14(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080548

RESUMO

We investigate the use of an ionic liquid (IL) as a surfactant in emulsion polymerization (EP) reactions. ILs have been proposed as surfactants for micellar dispersions, emulsions, micro-emulsions and suspensions. Thus, it is important to acquire knowledge of the application of ILs in heterogeneous polymerizations. We selected the amphiphile cationic oligoether IoLiLyte C1EG™ as an IL for this purpose and compared its performance to that of the conventional surfactant dodecyl trimethyl ammonium bromide (DTAB) in the EP of methyl methacrylate and styrene. After we found the proper concentration range of the IL, this amphiphile showed similar polymerization rates to those observed with DTAB for both monomers. The evolution of monomer conversion and the final average diameter of formed polymeric particles were similar for both evaluated surfactants, demonstrating their capability to stabilize the EPs of the investigated monomers. We simulated the evolution of monomer conversion and particle size using a conventional model for emulsion polymerization, which showed good agreement with the experimental data, suggesting that the EP with this IL follows Smith-Ewart kinetics.

7.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35012182

RESUMO

A significantly improved thermal pyrolysis process for polystyrene (PS) is reported and mathematically modeled, including the description of the time evolution of the full molecular weight distribution of the polymer during its degradation by direct integration of the balance equations without simplifications. The process improves the styrene yield from 28-39%, reached in our previous report, to 58-75% by optimizing the heating ramp during the initial stage of the pyrolysis process. The process was tested at 390 and 420 °C on samples of conventional PS synthesized via free-radical polymerization (FRP) and PS with a nitroxide end-functionality synthesized via nitroxide mediated polymerization (NMP) with three levels of the nitroxide to initiator (N/I) molar ratio: 0.9, 1.1 and 1.3. The NMP-PS produced with N/I = 1.3 generates the highest styrene yield (75.2 ± 6.7%) with respect to the best FRP-PS yield (64.9 ± 1.2%), confirming the trends observed in our previous study. The mathematical model corrects some problems of a previous model that was based on assumptions that led to significant errors in the predictions; this is achieved by solving the full molecular weight distribution (MWD) without assumptions. The model provides further insight into the initial stages of the pyrolysis process which seem to be crucial to determine the chemical paths of the process and the styrene yield, as well as the influences of the initial heating ramp used and the presence of a nitroxide end-functionality in the polymer.

8.
ACS Comb Sci ; 21(12): 771-781, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31626530

RESUMO

Copolymerization of isoprene (IP) with glycidyl methacrylate (GMA) was performed under RAFT (reversible addition-fragmentation chain-transfer) polymerization conditions in a platform for high-output experimentation. Covering the range between 1 and 0.2 molar fraction of IP in the feed, four sets of reactions were carried out at 10, 15, 20, and 30 h at 115 °C. The kinetic data obtained were used to estimate the reactivity ratios using a nonlinear least-squares approach (NLLS). Reactivity ratios rGMA = 0.61 and rIP = 0.74 indicate that both monomers tend to crosspropagate in agreement with known literature values. Concerning the RAFT study, relatively good control and livingness of the copolymerization was observed except for the experiment in which IP represents 20 mol % in the feed. 1H NMR characterization confirmed the presence of both monomers in the final copolymer, particularly the presence of the epoxy ring of GMA which is susceptible to post polymerization reactions. Finally, preliminary results on the hydrogenation of various polymers are discussed.


Assuntos
Butadienos/química , Compostos de Epóxi/química , Hemiterpenos/química , Metacrilatos/química , Polímeros/síntese química , Técnicas de Química Combinatória , Estrutura Molecular , Polimerização , Polímeros/química
9.
Polymers (Basel) ; 9(2)2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970751

RESUMO

Butyl rubber (isobutylene⁻isoprene⁻rubber, IIR) was functionalized in solution with a nitroxide moiety taking advantage of the unsaturations present in the isoprene units of IIR, and was further grafted with maleic anhydride (MA) or styrene⁻MA (SMA) to produce IIR-g-MA and IIR-g-SMA. In one of the functionalization techniques used, the molecular structure of the IIR was preserved as the chain-breaking reactions are prevented from occurring. The resulting graft copolymers were tested as compatiblizers/impact modifiers blended with Nylon-6, and one of them was preliminarily tested as a coupling agent in the preparation of nanocomposites of IIR and an organo-clay. Blends of PA-6/IIR-g-MA exhibited a significant increase in impact resistance at increasing loads of the modified IIR, as well as a good rubber particle dispersion in the polyamide matrix. On the other hand, the performance of IIR-g-SMA as an impact modifier of PA, or as a coupling agent in the preparation of rubber-organoclay nanocomposites, is marginal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA