Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 38(1): 132-146, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34961315

RESUMO

Therapeutic nano-bioconjugates (TNBCs) as an advanced class of drug delivery systems have attracted much attention due to more efficacy than the individual medications. Hence, in this study, a novel anti-infection TNBC system is designed based on highly porous silica nanoparticles, gold nanoparticles (AuNPs), and hybridized polyvinyl alcohol (PVA) for the efficient delivery of cefixime (CFM). Furthermore, a conjugation of cysteine-arginine (CR) dipeptide is made onto the surfaces for the enhancement of cell adhesion. Concisely, the AuNPs incorporated inside the PVA network play the key role in the controlled release process triggered by localized surface plasmon resonance (LSPR) heating. The drug content of the CFM-containing cargo (named as CFM@SiO2/PVA/Au-CR) and related release profile have been precisely studied by the confirmed analytical methods. Eventually, confocal microscopy on the stained cells has revealed that the TNBC particles are capable of entering the Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) bacterial cells better than the individual CFM. Also, optical density experiments (OD600) have corroborated that the prepared CFM@SiO2/PVA/Au-CR TNBC includes a high antimicrobial effect on K. pneumoniae and E. coli cells with (93.0 ± 1.5) % and (86.8 ± 1.0) % success rates, respectively, whereas the same dosage of the individual CFM has shown a lower effect on the cell growth rate. Also, estimation of minimum inhibitory/bactericidal concentrations (MIC/MBC) confirmed the enhanced antibacterial property of the CFM through the presented delivery method. Overall, this product is suggested to be clinically administrated instead of the individual CFM due to its high efficacy and containing lower dosage of the antibiotic drug.


Assuntos
Ouro , Nanopartículas Metálicas , Antibacterianos/farmacologia , Cefixima , Cisteína , Dipeptídeos , Liberação Controlada de Fármacos , Escherichia coli , Álcool de Polivinil , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA