Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8011): 393-401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632400

RESUMO

Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase-amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3-5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes.


Assuntos
Hipocampo , Memória de Curto Prazo , Neurônios , Adulto , Feminino , Humanos , Masculino , Potenciais de Ação , Cognição/fisiologia , Lobo Frontal/fisiologia , Lobo Frontal/citologia , Ritmo Gama/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Lobo Temporal/fisiologia , Lobo Temporal/citologia , Ritmo Teta/fisiologia , Pessoa de Meia-Idade
2.
J Neurosci ; 35(35): 12287-302, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26338339

RESUMO

In Parkinson's disease (PD), the human brain is capable of producing motor commands, but appears to require greater than normal subjective effort, particularly for the more-affected side. What is the nature of this subjective effort and can it be altered? We used an isometric task in which patients produced a goal force by engaging both arms, but were free to assign any fraction of that force to each arm. The patients preferred their less-affected arm, but only in some directions. This preference was correlated with lateralization of signal-dependent noise: the direction of force for which the brain was less willing to assign effort to an arm was generally the direction for which that arm exhibited greater noise. Therefore, the direction-dependent noise in each arm acted as an implicit cost that discouraged use of that arm. To check for a causal relationship between noise and motor cost, we used bilateral transcranial direct current stimulation of the motor cortex, placing the cathode on the more-affected side and the anode on the less-affected side. This stimulation not only reduced the noise on the more-affected arm, it also increased the willingness of the patients to assign force to that arm. In a 3 d double-blind study and in a 10 d repeated stimulation study, bilateral stimulation of the two motor cortices with cathode on the more-affected side reduced noise and increased the willingness of the patients to exert effort. This stimulation also improved the clinical motor symptoms of the disease. SIGNIFICANCE STATEMENT: In Parkinson's disease, patients are less willing to assign force to their affected arm. Here, we find that this pattern is direction dependent: directions for which the arm is noisier coincide with directions for which the brain is less willing to assign force. We hypothesized that if we could reduce the noise on the affected arm, then we may increase the willingness for the brain to assign force to that arm. We found a way to do this via noninvasive cortical stimulation. In addition to reducing effort costs associated with the affected arm, the cortical stimulation also improved clinical motor symptoms of the disease.


Assuntos
Lateralidade Funcional/fisiologia , Força da Mão/fisiologia , Córtex Motor/fisiopatologia , Doença de Parkinson/patologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana , Idoso , Análise de Variância , Biofísica , Método Duplo-Cego , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Modelos Teóricos , Distribuição Aleatória , Análise Espectral , Fatores de Tempo
3.
J Neurosci ; 34(5): 1806-18, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24478362

RESUMO

We have two arms, many muscles in each arm, and numerous neurons that contribute to their control. How does the brain assign responsibility to each of these potential actors? We considered a bimanual task in which people chose how much force to produce with each arm so that the sum would equal a target. We found that the dominant arm made a greater contribution, but only for specific directions. This was not because the dominant arm was stronger. Rather, it was less noisy. A cost that included unimanual noise and strength accounted for both direction- and handedness-dependent choices that young people made. To test whether there was a causal relationship between unimanual noise and bimanual control, we considered elderly people, whose unimanual noise is comparable in the two arms. We found that, in bimanual control, the elderly showed no preference for their dominant arm. We noninvasively stimulated the motor cortex to produce a change in unimanual strength and noise, and found a corresponding change in bimanual control. Using the noise measurements, we built a neuronal model. The model explained the anisotropic distribution of preferred directions of neurons in the monkey motor cortex and predicted that, in humans, there are changes in the number of these cortical neurons with handedness and aging. Therefore, we found that coordination can be explained by the noise and strength of each effector, where noise may be a reflection of the number of task-related neurons available for control of that effector in the motor cortex.


Assuntos
Braço/fisiologia , Lateralidade Funcional/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Fatores Etários , Idoso , Envelhecimento , Análise de Variância , Braço/inervação , Estimulação Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Modelos Teóricos , Córtex Motor/citologia , Neurônios Motores/fisiologia , Valor Preditivo dos Testes , Adulto Jovem
4.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071325

RESUMO

Working Memory (WM) and Long-Term Memory (LTM) are often viewed as separate cognitive systems. Little is known about how these systems interact when forming memories. We recorded single neurons in the human medial temporal lobe while patients maintained novel items in WM and a subsequent recognition memory test for the same items. In the hippocampus but not the amygdala, the level of WM content-selective persist activity during WM maintenance was predictive of whether the item was later recognized with high confidence or forgotten. In contrast, visually evoked activity in the same cells was not predictive of LTM formation. During LTM retrieval, memory-selective neurons responded more strongly to familiar stimuli for which persistent activity was high while they were maintained in WM. Our study suggests that hippocampal persistent activity of the same cell supports both WM maintenance and LTM encoding, thereby revealing a common single-neuron component of these two memory systems.

5.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767374

RESUMO

The neuromodulatory effects of focused ultrasound (FUS) have been demonstrated in animal models, and FUS has been used successfully to treat movement and psychiatric disorders in humans. However, despite the success of FUS, the mechanism underlying its effects on neurons remains poorly understood, making treatment optimization by tuning FUS parameters difficult. To address this gap in knowledge, we studied human neurons in vitro using neurons cultured from human-induced pluripotent stem cells (HiPSCs). Using HiPSCs allows for the study of human-specific neuronal behaviors in both physiologic and pathologic states. This report presents a protocol for using a high-throughput system that enables the monitoring and quantification of the neuromodulatory effects of FUS on HiPSC neurons. By varying the FUS parameters and manipulating the HiPSC neurons through pharmaceutical and genetic modifications, researchers can evaluate the neural responses and elucidate the neuro-modulatory effects of FUS on HiPSC neurons. This research could have significant implications for the development of safe and effective FUS-based therapies for a range of neurological and psychiatric disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microeletrodos , Neurônios , Humanos , Neurônios/fisiologia , Neurônios/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Ondas Ultrassônicas
6.
J Neurosci Methods ; 407: 110127, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615721

RESUMO

BACKGROUND: Human induced pluripotent stem cell (hiPSC)- derived neurons offer the possibility of studying human-specific neuronal behaviors in physiologic and pathologic states in vitro. It is unclear whether cultured neurons can achieve the fundamental network behaviors required to process information in the brain. Investigating neuronal oscillations and their interactions, as occurs in cross-frequency coupling (CFC), addresses this question. NEW METHODS: We examined whether networks of two-dimensional (2D) cultured hiPSC-derived cortical neurons grown with hiPSC-derived astrocytes on microelectrode array plates recapitulate the CFC that is present in vivo. We employed the modulation index method for detecting phase-amplitude coupling (PAC) and used offline spike sorting to analyze the contribution of single neuron spiking to network behavior. RESULTS: We found that PAC is present, the degree of PAC is specific to network structure, and it is modulated by external stimulation with bicuculline administration. Modulation of PAC is not driven by single neurons, but by network-level interactions. COMPARISON WITH EXISTING METHODS: PAC has been demonstrated in multiple regions of the human cortex as well as in organoids. This is the first report of analysis demonstrating the presence of coupling in 2D cultures. CONCLUSION: CFC in the form of PAC analysis explores communication and integration between groups of neurons and dynamical changes across networks. In vitro PAC analysis has the potential to elucidate the underlying mechanisms as well as capture the effects of chemical, electrical, or ultrasound stimulation; providing insight into modulation of neural networks to treat nervous system disorders in vivo.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microeletrodos , Neurônios , Humanos , Neurônios/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Potenciais de Ação/fisiologia , Células Cultivadas , Córtex Cerebral/fisiologia , Córtex Cerebral/citologia , Astrócitos/fisiologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Bicuculina/farmacologia , Rede Nervosa/fisiologia
7.
J Neurophysiol ; 109(1): 124-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23034365

RESUMO

Both abrupt and gradually imposed perturbations produce adaptive changes in motor output, but the neural basis of adaptation may be distinct. Here, we measured the state of the primary motor cortex (M1) and the corticospinal network during adaptation by measuring motor-evoked potentials (MEPs) before reach onset using transcranial magnetic stimulation of M1. Subjects reached in a force field in a schedule in which the field was introduced either abruptly or gradually over many trials. In both groups, by end of the training, muscles that countered the perturbation in a given direction increased their activity during the reach (labeled as the on direction for each muscle). In the abrupt group, in the period before the reach toward the on direction, MEPs in these muscles also increased, suggesting a direction-specific increase in the excitability of the corticospinal network. However, in the gradual group, these MEP changes were missing. After training, there was a period of washout. The MEPs did not return to baseline. Rather, in the abrupt group, off direction MEPs increased to match on direction MEPs. Therefore, we observed changes in corticospinal excitability in the abrupt but not gradual condition. Abrupt training includes the repetition of motor commands, and repetition may be the key factor that produces this plasticity. Furthermore, washout did not return MEPs to baseline, suggesting that washout engaged a new network that masked but did not erase the effects of previous adaptation. Abrupt but not gradual training appears to induce changes in M1 and/or corticospinal networks.


Assuntos
Adaptação Fisiológica/fisiologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Tratos Piramidais/fisiologia , Adolescente , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana
8.
medRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945427

RESUMO

Background: Parkinsonian bradykinesia is rated using a composite scale incorporating slowed frequency of repetitive movements, decrement amplitude, and arrhythmicity. Differential localization of these movement components within basal ganglia would drive the development of more personalized network-targeted symptomatic therapies. Methods: Using an optical motion sensor, amplitude and frequency of hand movements during grasping task were evaluated with subthalamic nucleus (STN)-Deep Brain Stimulation (DBS) "on" or "off" in 15 patients with Parkinson's disease (PD). The severity of bradykinesia was assessed blindly using the MDS-UPDRS Part-III scale. Volumes of activated tissue (VAT) of each subject were estimated where changes in amplitude and frequency were mapped to identify distinct anatomical substrates of each component in the STN. VATs were used to seed a normative functional connectome to generate connectivity maps associated with amplitude and frequency changes. Results: STN-DBS-induced change in amplitude was negatively correlated with change in MDS-UPDRS-III right (r = -0.65, p < 0.05) and left hand grasping scores (r = -0.63, p < 0.05). The change in frequency was negatively correlated with amplitude for both right (r = -0.63, p < 0.05) and left hand (r = -0.57, p < 0.05). The amplitude and frequency changes were represented as a spatial gradient with overlapping and non-overlapping regions spanning the dorsolateral-ventromedial axis of the STN. Whole-brain correlation maps between functional connectivity and motor changes were also inverted between amplitude and frequency changes. Conclusion: DBS-associated changes in frequency and amplitude were topographically and distinctly represented both locally in STN and in whole-brain functional connectivity.

9.
Brain Commun ; 5(6): fcad337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130840

RESUMO

Parkinsonian bradykinesia is rated using a composite scale incorporating the slowed frequency of repetitive movements, decrement amplitude and arrhythmicity. Differential localization of these movement components within the basal ganglia will drive the development of more personalized network-targeted symptomatic therapies. In this study, using an optical motion sensor, we evaluated the amplitude and frequency of hand movements during a grasping task with subthalamic nucleus deep brain stimulation 'on' or 'off' in 15 patients with Parkinson's disease. The severity of bradykinesia was assessed blindly using the Unified Parkinson's Disease Rating Part III scale. The volumes of activated tissue of each subject were estimated where changes in amplitude and frequency were mapped to identify distinct anatomical substrates of each component in the subthalamic nucleus. The volumes of activated tissue were used to seed a normative functional connectome to generate connectivity maps associated with amplitude and frequency changes. Deep brain stimulation-induced change in amplitude was negatively correlated with a change in Unified Parkinson's Disease Rating Part III scale for right (r = -0.65, P < 0.05) and left hand grasping scores (r = -0.63, P < 0.05). The change in frequency was negatively correlated with amplitude for both right (r = -0.63, P < 0.05) and left hands (r = -0.57, P < 0.05). The amplitude and frequency changes were represented as a spatial gradient with overlapping and non-overlapping regions spanning the anteromedial-posterolateral axis of the subthalamic nucleus. Whole-brain correlation maps between functional connectivity and motor changes were also inverted between amplitude and frequency changes. Deep brain stimulation-associated changes in frequency and amplitude were topographically and distinctly represented both locally in the subthalamic nucleus and in whole-brain functional connectivity.

10.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066145

RESUMO

Retaining information in working memory (WM) is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference. How cognitive control regulates WM storage, however, remains unknown. We hypothesized that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in WM. In the hippocampus, TG-PAC was indicative of WM load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. These PAC neurons were more strongly coordinated with frontal theta activity when cognitive control demand was high, and they introduced information-enhancing and behaviorally relevant noise correlations with persistently active neurons in the hippocampus. We show that TG-PAC integrates cognitive control and WM storage to improve the fidelity of WM representations and facilitate behavior.

11.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37502955

RESUMO

Human induced pluripotent stem cell (hiPSC) - derived neurons offer the possibility of studying human-specific neuronal behaviors in physiologic and pathologic states in vitro . However, it is unclear whether these cultured neurons can achieve the fundamental network behaviors that are required to process information in the human brain. Investigating neuronal oscillations and their interactions, as occurs in cross-frequency coupling (CFC), is potentially a relevant approach. Microelectrode array culture plates provide a controlled framework to study populations of hiPSC-derived cortical neurons (hiPSC-CNs) and their electrical activity. Here, we examined whether networks of two-dimensional cultured hiPSC-CNs recapitulate the CFC that is present in networks in vivo . We analyzed the electrical activity recorded from hiPSC-CNs grown in culture with hiPSC-derived astrocytes. We employed the modulation index method for detecting phase-amplitude coupling (PAC) and used an offline spike sorting method to analyze the contribution of a single neuron's spiking activities to network behavior. Our analysis demonstrates that the degree of PAC is specific to network structure and is modulated by external stimulation, such as bicuculine administration. Additionally, the shift in PAC is not driven by a single neuron's properties but by network-level interactions. CFC analysis in the form of PAC explores communication and integration between groups of nearby neurons and dynamical changes across the entire network. In vitro , it has the potential to capture the effects of chemical agents and electrical or ultrasound stimulation on these interactions and may provide valuable information for the modulation of neural networks to treat nervous system disorders in vivo . Significance: Phase amplitude coupling (PAC) analysis demonstrates that the complex interactions that occur between neurons and network oscillations in the human brain, in vivo , are present in 2-dimensional human cultures. This coupling is implicated in normal cognitive function as well as disease states. Its presence in vitro suggests that PAC is a fundamental property of neural networks. These findings offer the possibility of a model to understand the mechanisms and of PAC more completely and ultimately allow us to understand how it can be modulated in vivo to treat neurologic disease.

12.
Brain Stimul ; 15(1): 152-163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34856396

RESUMO

BACKGROUND: Phase-amplitude coupling (PAC) in which the amplitude of a faster field potential oscillation is coupled to the phase of a slower rhythm, is one of the most well-studied interactions between oscillations at different frequency bands. In a healthy brain, PAC accompanies cognitive functions such as learning and memory, and changes in PAC have been associated with neurological diseases including Parkinson's disease (PD), schizophrenia, obsessive-compulsive disorder, Alzheimer's disease, and epilepsy. OBJECTIVE: /Hypothesis: In PD, normalization of PAC in the motor cortex has been reported in the context of effective treatments such as dopamine replacement therapy and deep brain stimulation (DBS), but the possibility of normalizing PAC through intervention at the cortex has not been shown in humans. Phase-targeted stimulation (PDS) has a strong potential to modulate PAC levels and potentially normalize it. METHODS: We applied stimulation pulses triggered by specific phases of the beta oscillations, the low frequency oscillations that define phase of gamma amplitude in beta-gamma PAC, to the motor cortex of seven PD patients at rest during DBS lead placement surgery We measured the effect on PAC modulation in the motor cortex relative to stimulation-free periods. RESULTS: We describe a system for phase-targeted stimulation locked to specific phases of a continuously updated slow local field potential oscillation (in this case, beta band oscillations) prediction. Stimulation locked to the phase of the peak of beta oscillations increased beta-gamma coupling both during and after stimulation in the motor cortex, and the opposite phase (trough) stimulation reduced the magnitude of coupling after stimulation. CONCLUSION: These results demonstrate the capacity of cortical phase-targeted stimulation to modulate PAC without evoking motor activation, which could allow applications in the treatment of neurological disorders associated with abnormal PAC, such as PD.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Encéfalo , Cognição , Humanos , Doença de Parkinson/terapia
13.
J Alzheimers Dis ; 86(1): 21-42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034899

RESUMO

The COVID-19 pandemic has accelerated neurological, mental health disorders, and neurocognitive issues. However, there is a lack of inexpensive and efficient brain evaluation and screening systems. As a result, a considerable fraction of patients with neurocognitive or psychobehavioral predicaments either do not get timely diagnosed or fail to receive personalized treatment plans. This is especially true in the elderly populations, wherein only 16% of seniors say they receive regular cognitive evaluations. Therefore, there is a great need for development of an optimized clinical brain screening workflow methodology like what is already in existence for prostate and breast exams. Such a methodology should be designed to facilitate objective early detection and cost-effective treatment of such disorders. In this paper we have reviewed the existing clinical protocols, recent technological advances and suggested reliable clinical workflows for brain screening. Such protocols range from questionnaires and smartphone apps to multi-modality brain mapping and advanced imaging where applicable. To that end, the Society for Brain Mapping and Therapeutics (SBMT) proposes the Brain, Spine and Mental Health Screening (NEUROSCREEN) as a multi-faceted approach. Beside other assessment tools, NEUROSCREEN employs smartphone guided cognitive assessments and quantitative electroencephalography (qEEG) as well as potential genetic testing for cognitive decline risk as inexpensive and effective screening tools to facilitate objective diagnosis, monitor disease progression, and guide personalized treatment interventions. Operationalizing NEUROSCREEN is expected to result in reduced healthcare costs and improving quality of life at national and later, global scales.


Assuntos
COVID-19 , Pandemias , Idoso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Atenção à Saúde , Humanos , Masculino , Qualidade de Vida
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5970-5973, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892478

RESUMO

Cross-frequency coupling in general and phase-amplitude coupling (PAC) as a particular form of it, provides an opportunity to investigate the complex interactions between neural oscillations in the human brain and neurological disorders such as epilepsy. Using PAC detection methods on temporal sliding windows, we developed a map of dynamic PAC evolution to investigate the spatiotemporal changes occurring during ictal transitions in a patient with intractable mesial temporal lobe epilepsy. The map is built by computing the modulation index between the amplitude of high frequency oscillations and the phase of lower frequency rhythms from the intracranial stereoelectroencephalography recordings during seizure. Our preliminary results show early abnormal PAC changes occurring in the preictal state prior to the occurrence of clinical or visible electrographic seizure onset, and suggest that dynamic PAC measures may serve as a potential clinical technique for analyzing seizure dynamics.Clinical Relevance-Application of a dynamic temporal PAC map as a new tool may provide novel insights into the neurophysiology of epileptic seizure activity and its spatio-temporal dynamics.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Humanos , Convulsões
15.
Neurosurgery ; 88(5): E420-E426, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33575799

RESUMO

BACKGROUND: Intraoperative research during deep brain stimulation (DBS) surgery has enabled major advances in understanding movement disorders pathophysiology and potential mechanisms for therapeutic benefit. In particular, over the last decade, recording electrocorticography (ECoG) from the cortical surface, simultaneously with subcortical recordings, has become an important research tool for assessing basal ganglia-thalamocortical circuit physiology. OBJECTIVE: To provide confirmation of the safety of performing ECoG during DBS surgery, using data from centers involved in 2 BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative-funded basic human neuroscience projects. METHODS: Data were collected separately at 4 centers. The primary endpoint was complication rate, defined as any intraoperative event, infection, or postoperative magnetic resonance imaging abnormality requiring clinical follow-up. Complication rates for explanatory variables were compared using point biserial correlations and Fisher exact tests. RESULTS: A total of 367 DBS surgeries involving ECoG were reviewed. No cortical hemorrhages were observed. Seven complications occurred: 4 intraparenchymal hemorrhages and 3 infections (complication rate of 1.91%; CI = 0.77%-3.89%). The placement of 2 separate ECoG research electrodes through a single burr hole (84 cases) did not result in a significantly different rate of complications, compared to placement of a single electrode (3.6% vs 1.5%; P = .4). Research data were obtained successfully in 350 surgeries (95.4%). CONCLUSION: Combined with the single report previously available, which described no ECoG-related complications in a single-center cohort of 200 cases, these findings suggest that research ECOG during DBS surgery did not significantly alter complication rates.


Assuntos
Estimulação Encefálica Profunda , Eletrocorticografia , Transtornos dos Movimentos , Encéfalo/fisiopatologia , Encéfalo/cirurgia , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Eletrocorticografia/efeitos adversos , Eletrocorticografia/métodos , Humanos , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/fisiopatologia , Transtornos dos Movimentos/cirurgia , Complicações Pós-Operatórias
16.
Front Neurosci ; 14: 558967, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132822

RESUMO

Deep brain stimulation (DBS) is an effective surgical therapy for Parkinson's disease (PD). However, limitations of the DBS systems have led to great interest in adaptive neuromodulation systems that can dynamically adjust stimulation parameters to meet concurrent therapeutic demand. Constant high-frequency motor cortex stimulation has not been remarkably efficacious, which has led to greater focus on modulation of subcortical targets. Understanding of the importance of timing in both cortical and subcortical stimulation has generated an interest in developing more refined, parsimonious stimulation techniques based on critical oscillatory activities of the brain. Concurrently, much effort has been put into identifying biomarkers of both parkinsonian and physiological patterns of neuronal activities to drive next generation of adaptive brain stimulation systems. One such biomarker is beta-gamma phase amplitude coupling (PAC) that is detected in the motor cortex. PAC is strongly correlated with parkinsonian specific motor signs and symptoms and respond to therapies in a dose-dependent manner. PAC may represent the overall state of the parkinsonian motor network and have less instantaneously dynamic fluctuation during movement. These findings raise the possibility of novel neuromodulation paradigms that are potentially less invasiveness than DBS. Successful application of PAC in neuromodulation may necessitate phase-dependent stimulation technique, which aims to deliver precisely timed stimulation pulses to a specific phase to predictably modulate to selectively modulate pathological network activities and behavior in real time. Overcoming current technical challenges can lead to deeper understanding of the parkinsonian pathophysiology and development of novel neuromodulatory therapies with potentially less side-effects and higher therapeutic efficacy.

17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3590-3593, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018779

RESUMO

Phase-amplitude coupling (PAC), in which the amplitude of a faster neural oscillation couples to the phase of a slower rhythm, is one of the most common representations of complex neuronal rhythmic activities. In a healthy brain, PAC accompanies cognitive function, and abnormal patterns of PAC have been linked to several neurological disorders. Among the various brain neuromodulation techniques, phase-dependent stimulation has a strong potential to modulate PAC levels. In this study, we utilize a computational model in the NEURON environment based on a detailed mathematical model of neuronal populations, consisting of networks with both excitatory and inhibitory neurons, to simulate PAC generation. The model was then used to investigate the modulatory effects of phase-dependent stimulation on the generated PAC. Simulated data from the model shows that stimulation locked to the phase of slower rhythms increased PAC level during stimulation. These results demonstrate the capacity of phase-dependent stimulation to modulate PAC, which could allow for applications in the treatment of neurological disorders associated with abnormal PAC, such as Parkinson's disease.Clinical Relevance- Analyzing the origins of neuronal PAC and developing a brain stimulation technique for modulating the level of PAC can facilitate the development of novel treatment methods for neurological disorders associated with abnormal cross-frequency coupling.


Assuntos
Neurônios , Doença de Parkinson , Encéfalo , Cognição , Humanos , Doença de Parkinson/terapia
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3658-3661, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018794

RESUMO

Parkinson's Disease (PD) is a neurodegenerative disease characterized by its hallmark motor symptoms of bradykinesia and tremor. Numerous studies have suggested novel quantification methods of its symptoms. However, there lacks the means to accurately assess improvements in an intraoperative setting during deep brain stimulation (DBS) electrode implantation. This study introduces a methodology to quantify selected PD motor symptoms in such a restrictive environment using a wireless Leap Motion sensor. The result suggests that utilizing the Leap Motion sensor intraoperatively is feasible for quantifying motor parameters for bradykinesia and resting tremor of a PD patient.


Assuntos
Estimulação Encefálica Profunda , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Hipocinesia/diagnóstico , Doença de Parkinson/diagnóstico , Tremor/diagnóstico
19.
Front Neurosci ; 13: 125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846925

RESUMO

Synchronous, rhythmic changes in the membrane polarization of neurons form oscillations in local field potentials. It is hypothesized that high-frequency brain oscillations reflect local cortical information processing, and low-frequency brain oscillations project information flow across larger cortical networks. This provides complex forms of information transmission due to interactions between oscillations at different frequency bands, which can be rendered with cross-frequency coupling (CFC) metrics. Phase-amplitude coupling (PAC) is one of the most common representations of the CFC. PAC reflects the coupling of the phase of oscillations in a specific frequency band to the amplitude of oscillations in another frequency band. In a normal brain, PAC accompanies multi-item working memory in the hippocampus, and changes in PAC have been associated with diseases such as schizophrenia, obsessive-compulsive disorder (OCD), Alzheimer disease (AD), epilepsy, and Parkinson's disease (PD). The purpose of this article is to explore CFC across the central nervous system and demonstrate its correlation to neurological disorders. Results from previously published studies are reviewed to explore the significant role of CFC in large neuronal network communication and its abnormal behavior in neurological disease. Specifically, the association of effective treatment in PD such as dopaminergic medication and deep brain stimulation with PAC changes is described. Lastly, CFC analysis of the electrocorticographic (ECoG) signals recorded from the motor cortex of a Parkinson's disease patient and the parahippocampal gyrus of an epilepsy patient are demonstrated. This information taken together illuminates possible roles of CFC in the nervous system and its potential as a therapeutic target in disease states. This will require new neural interface technologies such as phase-dependent stimulation triggered by PAC changes, for the accurate recording, monitoring, and modulation of the CFC signal.

20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1110-1113, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060069

RESUMO

Transcranial direct current stimulation (tDCS) is an emerging method, used for non-invasively stimulating the brain in normal healthy subjects and in patients with neurological disorders. However, the pattern of the spatial distribution of the current intensity induced by tDCS is poorly understood. In this study, we directly measured the spatial characteristics of the current intensity induced by tDCS using an intracranial strip electrode array implanted over the motor cortex in patients with Parkinson's disease undergoing deep brain stimulation lead placement surgery. We used a bilateral stimulation configuration for the tDCS electrode placement and measured the amount of electric current passing through the contacts along the implanted strip electrode contacts. Our results showed significant changes of the current flow induced by the tDCS in some of the contacts during stimulation with respect to baseline activities. These results may provide vital information regarding the biophysical effects of tDCS stimulation and might be potentially useful for developing more effective stimulation strategies.


Assuntos
Espaço Subdural , Eletrodos Implantados , Humanos , Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA