Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526085

RESUMO

The surface area and pore volume of a metal-organic framework (MOF) can provide insight into its structure and potential applications. Both parameters are commonly determined using the data from nitrogen sorption experiments; commercial instruments to perform these measurements are also widely available. These instruments will calculate structural parameters, but it is essential to understand how to select input data and when calculation methods apply to the sample MOF. This article outlines the use of the Brunauer-Emmett-Teller (BET) method and Barrett-Joyner-Halenda (BJH) method for the calculation of surface area and pore volume, respectively. Example calculations are performed on the representative MOF UiO-66. Although widely applicable to MOFs, sample materials and adsorption data must meet certain criteria for the calculated results to be considered accurate, in addition to proper sample preparation. The assumptions and limitations of these methods are also discussed, along with alternative and complementary techniques for the MOF pore space characterization.


Assuntos
Estruturas Metalorgânicas , Compostos Organometálicos , Compostos Organometálicos/química , Nitrogênio/química
2.
ACS Appl Mater Interfaces ; 16(30): 40275-40285, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018033

RESUMO

To combat water scarcity in remote areas around the world, adsorption-based atmospheric water harvesting (AWH) has been proposed as a technology that can be used alongside existing water production capabilities. However, commonly used adsorbents either have low water adsorption loadings or are difficult to regenerate. In this work, we developed two novel hierarchical silica-salt composites that both exhibit high water adsorption loadings under dry and humid conditions. The total water vapor loading, kinetics, and heats of water adsorption for both silica-salt composites were investigated. As hierarchical silicas have tunable pores and large pore volumes, these materials serve as effective host matrixes for the hygroscopic salt LiCl. Our results suggest that hierarchical pores play a significant role in water adsorption: micropores and some smaller mesopores act as "storage" sites for hygroscopic salt, whereas larger mesopores and macropores increase the accessibility of water vapor into the silica. Using this mix of pores, we achieved greater than 0.4 g H2O/g composite at 10% RH and 27 °C. Additionally, we found that the salt-impregnated silica and bare silica had the same heat of adsorption: 80-90 kJ/mol. The results suggest that the H-bond interactions are similar for both systems and that the primary mechanism at play here is water cluster adsorption/desorption. Despite the similar energies, the LiCl-containing materials exhibited considerably slower kinetics than bare silica materials. Of equal importance to the adsorption capacity and kinetics of these composites is their mechanical stability. To assess their mechanical stability, high-energy ball milling of silica was conducted to create more uniform particle sizes. However, reduced particle sizes came at a cost─the BET surface areas and pore volumes were drastically decreased after more than 1 h of ball milling. Findings from this study suggest that short-term ball milling may be a viable large-scale option to reduce particle size in silica materials without sacrificing significant performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA