Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 179(5): 1112-1128.e26, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730853

RESUMO

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.


Assuntos
Genoma de Protozoário , Estágios do Ciclo de Vida/genética , Fígado/metabolismo , Fígado/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Alelos , Amino Açúcares/biossíntese , Animais , Culicidae/parasitologia , Eritrócitos/parasitologia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Genótipo , Modelos Biológicos , Mutação/genética , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fenótipo , Plasmodium berghei/metabolismo , Ploidias , Reprodução
2.
Cell ; 170(2): 260-272.e8, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28708996

RESUMO

The genomes of malaria parasites contain many genes of unknown function. To assist drug development through the identification of essential genes and pathways, we have measured competitive growth rates in mice of 2,578 barcoded Plasmodium berghei knockout mutants, representing >50% of the genome, and created a phenotype database. At a single stage of its complex life cycle, P. berghei requires two-thirds of genes for optimal growth, the highest proportion reported from any organism and a probable consequence of functional optimization necessitated by genomic reductions during the evolution of parasitism. In contrast, extreme functional redundancy has evolved among expanded gene families operating at the parasite-host interface. The level of genetic redundancy in a single-celled organism may thus reflect the degree of environmental variation it experiences. In the case of Plasmodium parasites, this helps rationalize both the relative successes of drugs and the greater difficulty of making an effective vaccine.


Assuntos
Genoma de Protozoário , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Animais , Evolução Biológica , Feminino , Técnicas de Inativação de Genes , Genes Essenciais , Interações Hospedeiro-Parasita , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium berghei/metabolismo , Saccharomyces cerevisiae/genética , Toxoplasma/genética , Trypanosoma brucei brucei/genética
3.
Nature ; 623(7987): 594-600, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748513

RESUMO

Molnupiravir, an antiviral medication widely used against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), acts by inducing mutations in the virus genome during replication. Most random mutations are likely to be deleterious to the virus and many will be lethal; thus, molnupiravir-induced elevated mutation rates reduce viral load1,2. However, if some patients treated with molnupiravir do not fully clear the SARS-CoV-2 infections, there could be the potential for onward transmission of molnupiravir-mutated viruses. Here we show that SARS-CoV-2 sequencing databases contain extensive evidence of molnupiravir mutagenesis. Using a systematic approach, we find that a specific class of long phylogenetic branches, distinguished by a high proportion of G-to-A and C-to-T mutations, are found almost exclusively in sequences from 2022, after the introduction of molnupiravir treatment, and in countries and age groups with widespread use of the drug. We identify a mutational spectrum, with preferred nucleotide contexts, from viruses in patients known to have been treated with molnupiravir and show that its signature matches that seen in these long branches, in some cases with onward transmission of molnupiravir-derived lineages. Finally, we analyse treatment records to confirm a direct association between these high G-to-A branches and the use of molnupiravir.


Assuntos
Antivirais , COVID-19 , Citidina , Hidroxilaminas , Mutagênese , Mutação , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/uso terapêutico , Genoma Viral/efeitos dos fármacos , Genoma Viral/genética , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Mutação/efeitos dos fármacos , Filogenia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Carga Viral , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Evolução Molecular , Mutagênese/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
4.
Nature ; 600(7889): 506-511, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649268

RESUMO

The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral/genética , Genômica , SARS-CoV-2/genética , Substituição de Aminoácidos , COVID-19/transmissão , Inglaterra/epidemiologia , Monitoramento Epidemiológico , Humanos , Epidemiologia Molecular , Mutação , Quarentena/estatística & dados numéricos , SARS-CoV-2/classificação , Análise Espaço-Temporal , Glicoproteína da Espícula de Coronavírus/genética
5.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453872

RESUMO

SUMMARY: Treenome Browser is a web browser tool to interactively visualize millions of genomes alongside huge phylogenetic trees. AVAILABILITY AND IMPLEMENTATION: Treenome Browser for SARS-CoV-2 can be accessed at cov2tree.org, or at taxonium.org for user-provided trees. Source code and documentation are available at github.com/theosanderson/taxonium and docs.taxonium.org/en/latest/treenome.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Genômica , Humanos , Filogenia , SARS-CoV-2/genética , Genoma , Software
6.
PLoS Pathog ; 17(7): e1008864, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34197567

RESUMO

Plasmodium vivax is responsible for the majority of malaria cases outside Africa. Unlike P. falciparum, the P. vivax life-cycle includes a dormant liver stage, the hypnozoite, which can cause infection in the absence of mosquito transmission. An effective vaccine against P. vivax blood stages would limit symptoms and pathology from such recurrent infections, and therefore could play a critical role in the control of this species. Vaccine development in P. vivax, however, lags considerably behind P. falciparum, which has many identified targets with several having transitioned to Phase II testing. By contrast only one P. vivax blood-stage vaccine candidate based on the Duffy Binding Protein (PvDBP), has reached Phase Ia, in large part because the lack of a continuous in vitro culture system for P. vivax limits systematic screening of new candidates. We used the close phylogenetic relationship between P. vivax and P. knowlesi, for which an in vitro culture system in human erythrocytes exists, to test the scalability of systematic reverse vaccinology to identify and prioritise P. vivax blood-stage targets. A panel of P. vivax proteins predicted to function in erythrocyte invasion were expressed as full-length recombinant ectodomains in a mammalian expression system. Eight of these antigens were used to generate polyclonal antibodies, which were screened for their ability to recognize orthologous proteins in P. knowlesi. These antibodies were then tested for inhibition of growth and invasion of both wild type P. knowlesi and chimeric P. knowlesi lines modified using CRISPR/Cas9 to exchange P. knowlesi genes with their P. vivax orthologues. Candidates that induced antibodies that inhibited invasion to a similar level as PvDBP were identified, confirming the utility of P. knowlesi as a model for P. vivax vaccine development and prioritizing antigens for further follow up.


Assuntos
Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium knowlesi/imunologia , Plasmodium vivax/imunologia , Antígenos de Protozoários/imunologia , Células Cultivadas , Humanos , Malária Vivax/prevenção & controle , Proteínas de Protozoários/imunologia
8.
PLoS Pathog ; 16(8): e1008717, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745123

RESUMO

Hepatocystis is a genus of single-celled parasites infecting, amongst other hosts, monkeys, bats and squirrels. Although thought to have descended from malaria parasites (Plasmodium spp.), Hepatocystis spp. are thought not to undergo replication in the blood-the part of the Plasmodium life cycle which causes the symptoms of malaria. Furthermore, Hepatocystis is transmitted by biting midges, not mosquitoes. Comparative genomics of Hepatocystis and Plasmodium species therefore presents an opportunity to better understand some of the most important aspects of malaria parasite biology. We were able to generate a draft genome for Hepatocystis sp. using DNA sequencing reads from the blood of a naturally infected red colobus monkey. We provide robust phylogenetic support for Hepatocystis sp. as a sister group to Plasmodium parasites infecting rodents. We show transcriptomic support for a lack of replication in the blood and genomic support for a complete loss of a family of genes involved in red blood cell invasion. Our analyses highlight the rapid evolution of genes involved in parasite vector stages, revealing genes that may be critical for interactions between malaria parasites and mosquitoes.


Assuntos
Apicomplexa/genética , Sangue/parasitologia , Colobus/parasitologia , Malária/veterinária , Doenças dos Macacos/parasitologia , Plasmodium/genética , Infecções Protozoárias em Animais/parasitologia , Animais , Apicomplexa/classificação , Apicomplexa/fisiologia , Genoma de Protozoário , Malária/sangue , Malária/parasitologia , Doenças dos Macacos/sangue , Filogenia , Plasmodium/classificação , Plasmodium/fisiologia , Infecções Protozoárias em Animais/sangue , Transcriptoma
9.
Biochem Soc Trans ; 50(3): 1069-1079, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35621119

RESUMO

The ∼30 Mb genomes of the Plasmodium parasites that cause malaria each encode ∼5000 genes, but the functions of the majority remain unknown. This is due to a paucity of functional annotation from sequence homology, which is compounded by low genetic tractability compared with many model organisms. In recent years technical breakthroughs have made forward and reverse genome-scale screens in Plasmodium possible. Furthermore, the adaptation of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Associated protein 9 (CRISPR/Cas9) technology has dramatically improved gene editing efficiency at the single gene level. Here, we review the arrival of genetic screens in malaria parasites to analyse parasite gene function at a genome-scale and their impact on understanding parasite biology. CRISPR/Cas9 screens, which have revolutionised human and model organism research, have not yet been implemented in malaria parasites due to the need for more complex CRISPR/Cas9 gene targeting vector libraries. We therefore introduce the reader to CRISPR-based screens in the related apicomplexan Toxoplasma gondii and discuss how these approaches could be adapted to develop CRISPR/Cas9 based genome-scale genetic screens in malaria parasites. Moreover, since more than half of Plasmodium genes are required for normal asexual blood-stage reproduction, and cannot be targeted using knockout methods, we discuss how CRISPR/Cas9 could be used to scale up conditional gene knockdown approaches to systematically assign function to essential genes.


Assuntos
Parasitos , Plasmodium , Toxoplasma , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Humanos , Parasitos/genética , Plasmodium/genética , Toxoplasma/genética
10.
Cell Microbiol ; 23(1): e13266, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975363

RESUMO

Malaria parasites are fast replicating unicellular organisms and require substantial amounts of folate for DNA synthesis. Despite the central role of this critical co-factor for parasite survival, only little is known about intraparasitic folate trafficking in Plasmodium. Here, we report on the expression, subcellular localisation and function of the parasite's folate transporter 2 (FT2) during life cycle progression in the murine malaria parasite Plasmodium berghei. Using live fluorescence microscopy of genetically engineered parasites, we demonstrate that FT2 localises to the apicoplast. In invasive P. berghei stages, a fraction of FT2 is also observed at the apical end. Upon genetic disruption of FT2, blood and liver infection, gametocyte production and mosquito colonisation remain unaltered. But in the Anopheles vector, FT2-deficient parasites develop inflated oocysts with unusual pulp formation consisting of numerous single-membrane vesicles, which ultimately fuse to form large cavities. Ultrastructural analysis suggests that this defect reflects aberrant sporoblast formation caused by abnormal vesicular traffic. Complete sporogony in FT2-deficient oocysts is very rare, and mutant sporozoites fail to establish hepatocyte infection, resulting in a complete block of parasite transmission. Our findings reveal a previously unrecognised organellar folate transporter that exerts critical roles for pathogen maturation in the arthropod vector.


Assuntos
Apicoplastos/metabolismo , Transportadores de Ácido Fólico/genética , Transportadores de Ácido Fólico/metabolismo , Ácido Fólico/metabolismo , Malária/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Animais , Anopheles/parasitologia , Hepatócitos/parasitologia , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mosquitos Vetores , Oocistos/citologia , Oocistos/genética , Oocistos/metabolismo , Organismos Geneticamente Modificados , Plasmodium berghei/citologia , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(45): 12045-12050, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078270

RESUMO

A highly effective vaccine would be a valuable weapon in the drive toward malaria elimination. No such vaccine currently exists, and only a handful of the hundreds of potential candidates in the parasite genome have been evaluated. In this study, we systematically evaluated 29 antigens likely to be involved in erythrocyte invasion, an essential developmental stage during which the malaria parasite is vulnerable to antibody-mediated inhibition. Testing antigens alone and in combination identified several strain-transcending targets that had synergistic combinatorial effects in vitro, while studies in an endemic population revealed that combinations of the same antigens were associated with protection from febrile malaria. Video microscopy established that the most effective combinations targeted multiple discrete stages of invasion, suggesting a mechanistic explanation for synergy. Overall, this study both identifies specific antigen combinations for high-priority clinical testing and establishes a generalizable approach that is more likely to produce effective vaccines.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Anticorpos Antiprotozoários/imunologia , Linhagem Celular , Eritrócitos/imunologia , Eritrócitos/parasitologia , Células HEK293 , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Estudos Prospectivos , Proteínas de Protozoários/imunologia
14.
Wellcome Open Res ; 9: 147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101048

RESUMO

Datasets on the amounts of different medicines used over time and location are a valuable resource, with the power to reveal insights into healthcare trends, cost efficiencies, and geographic disparities. In England, primary care prescription data has been openly accessible for analysis for some time through a web tool, providing significant benefits. Since 2020, the National Health Service in England has also released data on secondary care medicine usage, processed from stock control databases, which provides detailed information on medicine usage within hospitals. This is an important dataset, but until now has been available only in a raw form that requires considerable technical skills to be used for even the analysis of basic trends. I have built a web application that enables anyone to easily analyse trends in this data, which is available at hospitalmedicines.genomium.org.


Medicine prescription data is a valuable resource, with the power to reveal insights into healthcare trends, cost efficiencies, and geographic disparities. In England, primary care prescription data has been openly accessible for analysis for some time through a web tool, providing significant benefits. Since 2020, the National Health Service in England has also released data on secondary care prescriptions, i.e. prescribing within hospitals. This is an important dataset, but until now has been available only in a raw form that requires considerable technical skills to be used for even the analysis of basic trends. I have built a web application that enables anyone to easily analyse trends in this data, which is available at http://hospitalprescriptions.genomium.org.

15.
Nat Commun ; 15(1): 1652, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396069

RESUMO

Viral clearance, antibody response and the mutagenic effect of molnupiravir has not been elucidated in at-risk populations. Non-hospitalised participants within 5 days of SARS-CoV-2 symptoms randomised to receive molnupiravir (n = 253) or Usual Care (n = 324) were recruited to study viral and antibody dynamics and the effect of molnupiravir on viral whole genome sequence from 1437 viral genomes. Molnupiravir accelerates viral load decline, but virus is detectable by Day 5 in most cases. At Day 14 (9 days post-treatment), molnupiravir is associated with significantly higher viral persistence and significantly lower anti-SARS-CoV-2 spike antibody titres compared to Usual Care. Serial sequencing reveals increased mutagenesis with molnupiravir treatment. Persistence of detectable viral RNA at Day 14 in the molnupiravir group is associated with higher transition mutations following treatment cessation. Viral viability at Day 14 is similar in both groups with post-molnupiravir treated samples cultured up to 9 days post cessation of treatment. The current 5-day molnupiravir course is too short. Longer courses should be tested to reduce the risk of potentially transmissible molnupiravir-mutated variants being generated. Trial registration: ISRCTN30448031.


Assuntos
COVID-19 , Citidina/análogos & derivados , Hidroxilaminas , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , Pacientes Ambulatoriais , Formação de Anticorpos , Anticorpos Antivirais , Antivirais/uso terapêutico
16.
Lancet Infect Dis ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276782

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 variants and COVID-19 vaccination have resulted in complex exposure histories. Rapid assessment of the effects of these exposures on neutralising antibodies against SARS-CoV-2 infection is crucial for informing vaccine strategy and epidemic management. We aimed to investigate heterogeneity in individual-level and population-level antibody kinetics to emerging variants by previous SARS-CoV-2 exposure history, to examine implications for real-time estimation, and to examine the effects of vaccine-campaign timing. METHODS: Our Bayesian hierarchical model of antibody kinetics estimated neutralising-antibody trajectories against a panel of SARS-CoV-2 variants quantified with a live virus microneutralisation assay and informed by individual-level COVID-19 vaccination and SARS-CoV-2 infection histories. Antibody titre trajectories were modelled with a piecewise linear function that depended on the key biological quantities of an initial titre value, time the peak titre is reached, set-point time, and corresponding rates of increase and decrease for gradients between two timing parameters. All process parameters were estimated at both the individual level and the population level. We analysed data from participants in the University College London Hospitals-Francis Crick Institute Legacy study cohort (NCT04750356) who underwent surveillance for SARS-CoV-2 either through asymptomatic mandatory occupational health screening once per week between April 1, 2020, and May 31, 2022, or symptom-based testing between April 1, 2020, and Feb 1, 2023. People included in the Legacy study were either Crick employees or health-care workers at three London hospitals, older than 18 years, and gave written informed consent. Legacy excluded people who were unable or unwilling to give informed consent and those not employed by a qualifying institution. We segmented data to include vaccination events occurring up to 150 days before the emergence of three variants of concern: delta, BA.2, and XBB 1.5. We split the data for each wave into two categories: real-time and retrospective. The real-time dataset contained neutralising-antibody titres collected up to the date of emergence in each wave; the retrospective dataset contained all samples until the next SARS-CoV-2 exposure of each individual, whether vaccination or infection. FINDINGS: We included data from 335 participants in the delta wave analysis, 223 (67%) of whom were female and 112 (33%) of whom were male (median age 40 years, IQR 22-58); data from 385 participants in the BA.2 wave analysis, 271 (70%) of whom were female and 114 (30%) of whom were male (41 years, 22-60); and data from 248 participants in the XBB 1.5 wave analysis, 191 (77%) of whom were female, 56 (23%) of whom were male, and one (<1%) of whom preferred not to say (40 years, 21-59). Overall, we included 968 exposures (vaccinations) across 1895 serum samples in the model. For the delta wave, we estimated peak titre values as 490·0 IC50 (95% credible interval 224·3-1515·9) for people with no previous infection and as 702·4 IC50 (300·8-2322·7) for people with a previous infection before omicron; the delta wave did not include people with a previous omicron infection. For the BA.2 wave, we estimated peak titre values as 858·1 IC50 (689·8-1363·2) for people with no previous infection, 1020·7 IC50 (725·9-1722·6) for people with a previous infection before omicron, and 1422·0 IC50 (679·2-3027·3) for people with a previous omicron infection. For the XBB 1.5 wave, we estimated peak titre values as 703·2 IC50 (415·0-3197·8) for people with no previous infection, 1215·9 IC50 (511·6-7338·7) for people with a previous infection before omicron, and 1556·3 IC50 (757·2-7907·9) for people with a previous omicron infection. INTERPRETATION: Our study shows the feasibility of real-time estimation of antibody kinetics before SARS-CoV-2 variant emergence. This estimation is valuable for understanding how specific combinations of SARS-CoV-2 exposures influence antibody kinetics and for examining how COVID-19 vaccination-campaign timing could affect population-level immunity to emerging variants. FUNDING: Wellcome Trust, National Institute for Health Research University College London Hospitals Biomedical Research Centre, UK Research and Innovation, UK Medical Research Council, Francis Crick Institute, and Genotype-to-Phenotype National Virology Consortium.

17.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746185

RESUMO

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of March 2023, viewable at https://viridian.taxonium.org. Each genome was constructed using a novel assembly tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. Phase 2 of our project will address the fact that the data in the public archives is heavily geographically biased towards the Global North. We therefore have contributed new raw data to ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina and Singapore. We will incorporate these, along with all public raw data submitted between March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.

18.
Elife ; 122023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847334

RESUMO

Predicting the function of a protein from its amino acid sequence is a long-standing challenge in bioinformatics. Traditional approaches use sequence alignment to compare a query sequence either to thousands of models of protein families or to large databases of individual protein sequences. Here we introduce ProteInfer, which instead employs deep convolutional neural networks to directly predict a variety of protein functions - Enzyme Commission (EC) numbers and Gene Ontology (GO) terms - directly from an unaligned amino acid sequence. This approach provides precise predictions which complement alignment-based methods, and the computational efficiency of a single neural network permits novel and lightweight software interfaces, which we demonstrate with an in-browser graphical interface for protein function prediction in which all computation is performed on the user's personal computer with no data uploaded to remote servers. Moreover, these models place full-length amino acid sequences into a generalised functional space, facilitating downstream analysis and interpretation. To read the interactive version of this paper, please visit https://google-research.github.io/proteinfer/.


Assuntos
Algoritmos , Redes Neurais de Computação , Proteínas/genética , Proteínas/química , Sequência de Aminoácidos , Software , Biologia Computacional/métodos
19.
Cell Host Microbe ; 31(2): 305-319.e10, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36634679

RESUMO

Malaria transmission to mosquitoes requires a developmental switch in asexually dividing blood-stage parasites to sexual reproduction. In Plasmodium berghei, the transcription factor AP2-G is required and sufficient for this switch, but how a particular sex is determined in a haploid parasite remains unknown. Using a global screen of barcoded mutants, we here identify genes essential for the formation of either male or female sexual forms and validate their importance for transmission. High-resolution single-cell transcriptomics of ten mutant parasites portrays the developmental bifurcation and reveals a regulatory cascade of putative gene functions in the determination and subsequent differentiation of each sex. A male-determining gene with a LOTUS/OST-HTH domain as well as the protein interactors of a female-determining zinc-finger protein indicate that germ-granule-like ribonucleoprotein complexes complement transcriptional processes in the regulation of both male and female development of a malaria parasite.


Assuntos
Culicidae , Malária , Parasitos , Animais , Feminino , Masculino , Parasitos/metabolismo , Malária/parasitologia , Plasmodium berghei/genética , Desenvolvimento Sexual/genética , Culicidae/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
20.
Elife ; 112022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377483

RESUMO

The COVID-19 pandemic has resulted in a step change in the scale of sequencing data, with more genomes of SARS-CoV-2 having been sequenced than any other organism on earth. These sequences reveal key insights when represented as a phylogenetic tree, which captures the evolutionary history of the virus, and allows the identification of transmission events and the emergence of new variants. However, existing web-based tools for exploring phylogenies do not scale to the size of datasets now available for SARS-CoV-2. We have developed Taxonium, a new tool that uses WebGL to allow the exploration of trees with tens of millions of nodes in the browser for the first time. Taxonium links each node to associated metadata and supports mutation-annotated trees, which are able to capture all known genetic variation in a dataset. It can either be run entirely locally in the browser, from a server-based backend, or as a desktop application. We describe insights that analysing a tree of five million sequences can provide into SARS-CoV-2 evolution, and provide a tool at cov2tree.org for exploring a public tree of more than five million SARS-CoV-2 sequences. Taxonium can be applied to any tree, and is available at taxonium.org, with source code at github.com/theosanderson/taxonium.


Since 2020, the SARS-CoV-2 virus has infected billions of people and spread to 185 countries. The virus spreads by making new copies of its genome inside human cells and exploits the cells' machinery to synthesise viral proteins it needs to infect further cells. Each time the virus copies its genetic material there's a chance that the replication process introduces an error to the genetic sequence. Over time, these mutations accumulate which can give rise to new variants with different properties. These new variants, originating from a common ancestor, may spread faster or be able to evade immune systems that have learnt to recognise previous variants. To understand where new variants of SARS-CoV-2 come from and how related they are to each other, scientists build family trees called 'phylogenetic trees' based on similarities in the genetic sequences of different variants of the virus. Looking at these trees researchers can track how a variant spreads geographically, and also attempt to identify new worrying variants that might lead to a new wave of infections. The scale of the COVID-19 pandemic together with the global effort by clinicians and researchers to sequence SARS-CoV-2 genetic material means a library of over 13 million SARS-CoV-2 genomes now exists, making it the largest such collection for any organism. Although phylogenetic trees of viruses have been studied for a long time, exploring the SARS-CoV-2 library presents technical and practical challenges due to its sheer size. Sanderson has developed an open-source web tool called Taxonium that allows users to explore phylogenetic trees with millions of sequences. With help from collaborators at the University of California, Santa Cruz, Sanderson built a website called Cov2Tree, that uses the Taxonium platform to allow immediate access to an expansive tree of all publicly available SARS-CoV-2 sequences. Cov2Tree enables users to visualise all SARS-CoV-2 genomes in a birds-eye view akin to a 'Google Earth for virus sequences' where anyone can zoom in on a related family of viruses down to the level of individual sequences. This can be used to compare variants and follow geographic spread. Using Taxonium, scientists can explore how virus sequences are related to each other. They can also see the individual mutations that have occurred at each branch of the tree, and can search for sequences based on mutation, geographical location, or other factors. Interestingly, a trend appearing in the SARS-CoV-2 phylogenetic tree is the emergence of identical mutations at different branches of the tree without a common origin. These mutations may be a result of convergent evolution, a phenomenon that occurs when a mutation appears independently in different variants as it confers an advantage to the virus making such mutations more likely to persist. This means that scientists may be able to expect certain mutations to appear in more distantly related variants if they have appeared independently in several different variants already. Overall, Taxonium is an important tool for monitoring SARS-CoV-2 genomes, but it also has broader applications. The tool can be used to browse phylogenetic trees of other viruses and organisms. Furthermore, the Taxonium website offers a way to browse a tree of life, with images and links to Wikipedia. The SARS-CoV-2 library might be the largest now, but in the future even bigger datasets will likely be available, highlighting the importance of tools like Taxonium.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Filogenia , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiologia , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA