Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Psychol ; : 1-13, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37359649

RESUMO

Prosociality is often considered as quintessential in coping with the threats of health emergencies. As previous research has suggested, prosocial behaviors are shaped by both dispositional factors and situational cues about the helping situation. In the present research, we investigated whether "bonding" types of prosociality, helping directed towards close others within one's social network, and "bridging" types of prosociality, helping directed towards vulnerable people across group boundaries, are predicted by basic individual values and threat appraisals concerning COVID-19. During the pandemic, we conducted a cross-sectional study in the US and India (Ntotal = 954), using the Schwartz value inventory and a multifaceted measure of threat assessment to predict prosocial helping intentions. After controlling for other value and threat facets, self-transcendence values and threat for vulnerable groups uniquely predicted both bonding and bridging types of prosociality. Furthermore, threat for vulnerable groups partially mediated the effect of self-transcendence on prosocial helping intentions: People who endorsed self-transcendent values were particularly concerned by the effect of the pandemic on vulnerable groups, and thus willing to engage in prosocial behaviours to help those in need. Our findings support the idea that prosociality is stimulated by empathic concerns towards others in need and underline the importance for future research to consider the broad spectrum of threats appraised by people during health emergencies. Supplementary Information: The online version contains supplementary material available at 10.1007/s12144-023-04829-1.

2.
Sensors (Basel) ; 22(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35746401

RESUMO

Fruit industries play a significant role in many aspects of global food security. They provide recognized vitamins, antioxidants, and other nutritional supplements packed in fresh fruits and other processed commodities such as juices, jams, pies, and other products. However, many fruit crops including peaches (Prunus persica (L.) Batsch) are perennial trees requiring dedicated orchard management. The architectural and morphological traits of peach trees, notably tree height, canopy area, and canopy crown volume, help to determine yield potential and precise orchard management. Thus, the use of unmanned aerial vehicles (UAVs) coupled with RGB sensors can play an important role in the high-throughput acquisition of data for evaluating architectural traits. One of the main factors that define data quality are sensor imaging angles, which are important for extracting architectural characteristics from the trees. In this study, the goal was to optimize the sensor imaging angles to extract the precise architectural trait information by evaluating the integration of nadir and oblique images. A UAV integrated with an RGB imaging sensor at three different angles (90°, 65°, and 45°) and a 3D light detection and ranging (LiDAR) system was used to acquire images of peach trees located at the Washington State University's Tukey Horticultural Orchard, Pullman, WA, USA. A total of four approaches, comprising the use of 2D data (from UAV) and 3D point cloud (from UAV and LiDAR), were utilized to segment and measure the individual tree height and canopy crown volume. Overall, the features extracted from the images acquired at 45° and integrated nadir and oblique images showed a strong correlation with the ground reference tree height data, while the latter was highly correlated with canopy crown volume. Thus, selection of the sensor angle during UAV flight is critical for improving the accuracy of extracting architectural traits and may be useful for further precision orchard management.


Assuntos
Prunus persica , Frutas , Humanos , Árvores , Washington
3.
Sensors (Basel) ; 22(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36236336

RESUMO

Aphanomyces root rot (ARR) is a devastating disease that affects the production of pea. The plants are prone to infection at any growth stage, and there are no chemical or cultural controls. Thus, the development of resistant pea cultivars is important. Phenomics technologies to support the selection of resistant cultivars through phenotyping can be valuable. One such approach is to couple imaging technologies with deep learning algorithms that are considered efficient for the assessment of disease resistance across a large number of plant genotypes. In this study, the resistance to ARR was evaluated through a CNN-based assessment of pea root images. The proposed model, DeepARRNet, was designed to classify the pea root images into three classes based on ARR severity scores, namely, resistant, intermediate, and susceptible classes. The dataset consisted of 1581 pea root images with a skewed distribution. Hence, three effective data-balancing techniques were identified to solve the prevalent problem of unbalanced datasets. Random oversampling with image transformations, generative adversarial network (GAN)-based image synthesis, and loss function with class-weighted ratio were implemented during the training process. The result indicated that the classification F1-score was 0.92 ± 0.03 when GAN-synthesized images were added, 0.91 ± 0.04 for random resampling, and 0.88 ± 0.05 when class-weighted loss function was implemented, which was higher than when an unbalanced dataset without these techniques were used (0.83 ± 0.03). The systematic approaches evaluated in this study can be applied to other image-based phenotyping datasets, which can aid the development of deep-learning models with improved performance.


Assuntos
Aphanomyces , Aphanomyces/genética , Resistência à Doença/genética , Genótipo , Pisum sativum
4.
Sensors (Basel) ; 22(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808366

RESUMO

Pest attacks on plants can substantially change plants' volatile organic compounds (VOCs) emission profiles. Comparison of VOC emission profiles between non-infected/non-infested and infected/infested plants, as well as resistant and susceptible plant cultivars, may provide cues for a deeper understanding of plant-pest interactions and associated resistance. Furthermore, the identification of biomarkers-specific biogenic VOCs-associated with the resistance can serve as a non-destructive and rapid tool for phenotyping applications. This research aims to compare the VOCs emission profiles under diverse conditions to identify constitutive (also referred to as green VOCs) and induced (resulting from biotic/abiotic stress) VOCs released in potatoes and wheat. In the first study, wild potato Solanum bulbocastanum (accession# 22; SB22) was inoculated with Meloidogyne chitwoodi race 1 (Mc1), and Mc1 pathotype Roza (SB22 is resistant to Mc1 and susceptible to pathotype Roza), and VOCs emission profiles were collected using gas chromatography-flame ionization detection (GC-FID) at different time points. Similarly, in the second study, the VOCs emission profiles of resistant ('Hollis') and susceptible ('Alturas') wheat cultivars infested with Hessian fly insects were evaluated using the GC-FID system. In both studies, in addition to variable plant responses (susceptibility to pests), control treatments (non-inoculated or non-infested) were used to compare the VOCs emission profiles resulting from differences in stress conditions. The common VOC peaks (constitutive VOCs) between control and infected/infested samples, and unique VOC peaks (induced VOCs) presented only in infected/infested samples were analyzed. In the potato-nematode study, the highest unique peak was found two days after inoculation (DAI) for SB22 inoculated with Mc1 (resistance response). The most common VOC peaks in SB22 inoculated with both Mc1 and Roza were found at 5 and 10 DAI. In the wheat-insect study, only the Hollis showed unique VOC peaks. Interestingly, both cultivars released the same common VOCs between control and infected samples, with only a difference in VOC average peak intensity at 22.4 min retention time where the average intensity was 4.3 times higher in the infested samples of Hollis than infested samples of Alturas. These studies demonstrate the potential of plant VOCs to serve as a rapid phenotyping tool to assess resistance levels in different crops.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Animais , Insetos , Plantas , Triticum
5.
J Exp Bot ; 72(12): 4373-4383, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33735372

RESUMO

Plateauing yield and stressful environmental conditions necessitate selecting crops for superior physiological traits with untapped potential to enhance crop performance. Plant productivity is often limited by carbon fixation rates that could be improved by increasing maximum photosynthetic carboxylation capacity (Vcmax). However, Vcmax measurements using gas exchange and biochemical assays are slow and laborious, prohibiting selection in breeding programs. Rapid hyperspectral reflectance measurements show potential for predicting Vcmax using regression models. While several hyperspectral models have been developed, contributions from different spectral regions to predictions of Vcmax have not been clearly identified or linked to biochemical variation contributing to Vcmax. In this study, hyperspectral reflectance data from 350-2500 nm were used to build partial least squares regression models predicting in vivo and in vitro Vcmax. Wild-type and transgenic tobacco plants with antisense reductions in Rubisco content were used to alter Vcmax independent from chlorophyll, carbon, and nitrogen content. Different spectral regions were used to independently build partial least squares regression models and identify key regions linked to Vcmax and other leaf traits. The greatest Vcmax prediction accuracy used a portion of the shortwave infrared region from 2070 nm to 2470 nm, where the inclusion of fewer spectral regions resulted in more accurate models.


Assuntos
Nicotiana , Melhoramento Vegetal , Clorofila , Fotossíntese , Folhas de Planta
6.
Sensors (Basel) ; 20(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371462

RESUMO

The study evaluates the suitability of a field asymmetric ion mobility spectrometry (FAIMS) system for early detection of the Pythium leak disease in potato tubers simulating bulk storage conditions. Tubers of Ranger Russet (RR) and Russet Burbank (RB) cultivars were inoculated with Pythium ultimum, the causal agent of Pythium leak (with negative control samples as well) and placed in glass jars. The headspace in sampling jars was scanned using the FAIMS system at regular intervals (in days up to 14 and 31 days for the tubers stored at 25 °C and 4 °C, respectively) to acquire ion mobility current profiles representing the volatile organic compounds (VOCs). Principal component analysis plots revealed that VOCs ion peak profiles specific to Pythium ultimum were detected for the cultivars as early as one day after inoculation (DAI) at room temperature storage condition, while delayed detection was observed for tubers stored at 4 °C (RR: 5th DAI and RB: 10th DAI), possibly due to a slower disease progression at a lower temperature. There was also some overlap between control and inoculated samples at a lower temperature, which could be because of the limited volatile release. Additionally, data suggested that the RB cultivar might be less susceptible to Pythium ultimum under reduced temperature storage conditions. Disease symptom-specific critical compensation voltage (CV) and dispersion field (DF) from FAIMS responses were in the ranges of -0.58 to -2.97 V and 30-84% for the tubers stored at room temperature, and -0.31 to -2.97 V and 28-90% for reduced temperature, respectively. The ion current intensities at -1.31 V CV and 74% DF showed distinctive temporal progression associated with healthy control and infected tuber samples.


Assuntos
Espectrometria de Mobilidade Iônica , Doenças das Plantas/microbiologia , Tubérculos/microbiologia , Pythium/patogenicidade , Solanum tuberosum/microbiologia , Compostos Orgânicos Voláteis/análise , Biomarcadores/análise , Estudos de Viabilidade
7.
Sensors (Basel) ; 20(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155830

RESUMO

The timing and duration of flowering are key agronomic traits that are often associated with the ability of a variety to escape abiotic stress such as heat and drought. Flowering information is valuable in both plant breeding and agricultural production management. Visual assessment, the standard protocol used for phenotyping flowering, is a low-throughput and subjective method. In this study, we evaluated multiple imaging sensors (RGB and multiple multispectral cameras), image resolution (proximal/remote sensing at 1.6 to 30 m above ground level/AGL), and image processing (standard and unsupervised learning) techniques in monitoring flowering intensity of four cool-season crops (canola, camelina, chickpea, and pea) to enhance the accuracy and efficiency in quantifying flowering traits. The features (flower area, percentage of flower area with respect to canopy area) extracted from proximal (1.6-2.2 m AGL) RGB and multispectral (with near infrared, green and blue band) image data were strongly correlated (r up to 0.89) with visual rating scores, especially in pea and canola. The features extracted from unmanned aerial vehicle integrated RGB image data (15-30 m AGL) could also accurately detect and quantify large flowers of winter canola (r up to 0.84), spring canola (r up to 0.72), and pea (r up to 0.72), but not camelina or chickpea flowers. When standard image processing using thresholds and unsupervised machine learning such as k-means clustering were utilized for flower detection and feature extraction, the results were comparable. In general, for applicability of imaging for flower detection, it is recommended that the image data resolution (i.e., ground sampling distance) is at least 2-3 times smaller than that of the flower size. Overall, this study demonstrates the feasibility of utilizing imaging for monitoring flowering intensity in multiple varieties of evaluated crops.


Assuntos
Temperatura Baixa , Produtos Agrícolas/anatomia & histologia , Flores/anatomia & histologia , Processamento de Imagem Assistida por Computador , Estações do Ano , Algoritmos , Aprendizado de Máquina , Fenótipo , Tecnologia de Sensoriamento Remoto , Sementes/crescimento & desenvolvimento
8.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244875

RESUMO

Lentil (Lens culinaris Medikus) is an important source of protein for people in developing countries. Aphanomyces root rot (ARR) has emerged as one of the most devastating diseases affecting lentil production. In this study, we applied two complementary quantitative trait loci (QTL) analysis approaches to unravel the genetic architecture underlying this complex trait. A recombinant inbred line (RIL) population and an association mapping population were genotyped using genotyping by sequencing (GBS) to discover novel single nucleotide polymorphisms (SNPs). QTL mapping identified 19 QTL associated with ARR resistance, while association mapping detected 38 QTL and highlighted accumulation of favorable haplotypes in most of the resistant accessions. Seven QTL clusters were discovered on six chromosomes, and 15 putative genes were identified within the QTL clusters. To validate QTL mapping and genome-wide association study (GWAS) results, expression analysis of five selected genes was conducted on partially resistant and susceptible accessions. Three of the genes were differentially expressed at early stages of infection, two of which may be associated with ARR resistance. Our findings provide valuable insight into the genetic control of ARR, and genetic and genomic resources developed here can be used to accelerate development of lentil cultivars with high levels of partial resistance to ARR.


Assuntos
Aphanomyces/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Lens (Planta)/genética , Lens (Planta)/microbiologia , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Análise de Dados , Regulação da Expressão Gênica de Plantas , Genética Populacional , Haplótipos/genética , Desequilíbrio de Ligação/genética , Fenótipo , Doenças das Plantas/microbiologia
9.
Sensors (Basel) ; 19(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052251

RESUMO

Field pea cultivars are constantly improved through breeding programs to enhance biotic and abiotic stress tolerance and increase seed yield potential. In pea breeding, the Above Ground Biomass (AGBM) is assessed due to its influence on seed yield, canopy closure, and weed suppression. It is also the primary yield component for peas used as a cover crop and/or grazing. Measuring AGBM is destructive and labor-intensive process. Sensor-based phenotyping of such traits can greatly enhance crop breeding efficiency. In this research, high resolution RGB and multispectral images acquired with unmanned aerial systems were used to assess phenotypes in spring and winter pea breeding plots. The Green Red Vegetation Index (GRVI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Red Edge Index (NDRE), plot volume, canopy height, and canopy coverage were extracted from RGB and multispectral information at five imaging times (between 365 to 1948 accumulated degree days/ADD after 1 May) in four winter field pea experiments and at three imaging times (between 1231 to 1648 ADD) in one spring field pea experiment. The image features were compared to ground-truth data including AGBM, lodging, leaf type, days to 50% flowering, days to physiological maturity, number of the first reproductive node, and seed yield. In two of the winter pea experiments, a strong correlation between image features and seed yield was observed at 1268 ADD (flowering). An increase in correlation between image features with the phenological traits such as days to 50% flowering and days to physiological maturity was observed at about 1725 ADD in these winter pea experiments. In the spring pea experiment, the plot volume estimated from images was highly correlated with ground truth canopy height (r = 0.83) at 1231 ADD. In two other winter pea experiments and the spring pea experiment, the GRVI and NDVI features were significantly correlated with AGBM at flowering. When selected image features were used to develop a least absolute shrinkage and selection operator model for AGBM estimation, the correlation coefficient between the actual and predicted AGBM was 0.60 and 0.84 in the winter and spring pea experiments, respectively. A SPOT-6 satellite image (1.5 m resolution) was also evaluated for its applicability to assess biomass and seed yield. The image features extracted from satellite imagery showed significant correlation with seed yield in two winter field pea experiments, however, the trend was not consistent. In summary, the study supports the potential of using unmanned aerial system-based imaging techniques to estimate biomass and crop performance in pea breeding programs.


Assuntos
Agricultura , Biomassa , Pisum sativum/crescimento & desenvolvimento , Tecnologia de Sensoriamento Remoto , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Sementes/crescimento & desenvolvimento
10.
Sensors (Basel) ; 18(5)2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762463

RESUMO

Bitter pit is one of the most important disorders in apples. Some of the fresh market apple varieties are susceptible to bitter pit disorder. In this study, visible⁻near-infrared spectrometry-based reflectance spectral data (350⁻2500 nm) were acquired from 2014, 2015 and 2016 harvest produce after 63 days of storage at 5 °C. Selected spectral features from 2014 season were used to classify the healthy and bitter pit samples from three years. In addition, these spectral features were also validated using hyperspectral imagery data collected on 2016 harvest produce after storage in a commercial storage facility for 5 months. The hyperspectral images were captured from either sides of apples in the range of 550⁻1700 nm. These images were analyzed to extract additional set of spectral features that were effective in bitter pit detection. Based on these features, an automated spatial data analysis algorithm was developed to detect bitter pit points. The pit area was extracted, and logistic regression was used to define the categorizing threshold. This method was able to classify the healthy and bitter pit apples with an accuracy of 85%. Finally, hyperspectral imagery derived spectral features were re-evaluated on the visible⁻near-infrared reflectance data acquired with spectrometer. The pertinent partial least square regression classification accuracies were in the range of 90⁻100%. Overall, the study identified salient spectral features based on both hyperspectral spectrometry and imaging techniques that can be used to develop a sensing solution to sort the fruit on the packaging lines.


Assuntos
Malus/fisiologia , Espectrofotometria , Algoritmos , Análise Discriminante , Frutas/fisiologia , Processamento de Imagem Assistida por Computador , Análise dos Mínimos Quadrados , Modelos Logísticos , Doenças das Plantas/etiologia , Temperatura , Fatores de Tempo
11.
Data Brief ; 53: 110013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38435735

RESUMO

Crop yield potential in breeding trials can be captured using unmanned aerial vehicle (UAV) based multispectral imagery. Several digital traits or phenotypes such as vegetation indices can represent canopy crop vigor and overall plant health, which can be used to evaluate differences in performance across varieties in crop breeding programs. This dataset contains agronomic data for named cultivars and breeding lines of spring-sown dry pea and chickpea, and over 275 multispectral images from advanced and preliminary breeding trials. The breeding trials were located at three locations in the "Palouse" region of Eastern Washington and Northern Idaho of the United States across 2017, 2018 and 2019 cropping seasons. The multispectral images were captured using a UAV integrated with a 5-band multispectral camera at multiple time points from early vegetative growth through pod development stages during each cropping season. This dataset details seed yield information from trials of dry peas and chickpea that were obtained from each location, as well as additional agronomic and phenological data recorded at one location (mostly Pullman, WA) for each cropping season. The dataset also includes 20-78 megabytes (MB) Tagged Image Format (TIF) uncalibrated stitched orthomosaic images generated from the photogrammetric software. The images can be processed using any convenient image processing algorithm to obtain vegetation indices and other useful information.

12.
Poult Sci ; 103(8): 103961, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941761

RESUMO

Salmonella and Campylobacter are major foodborne pathogens that cause outbreaks associated with contaminated chicken liver. Proper cooking is necessary to avoid the risk of illness to consumers. This study tested the thermal inactivation of a 4-strain Salmonella cocktail and a 3-strain Campylobacter cocktail in chicken livers separately at temperatures ranging from 55.0 to 62.5°C. Inoculated livers were sealed in aluminum cells and immersed in a water bath. The decimal reduction time (D-values) of Salmonella in chicken livers were 9.01, 2.36, 0.82, and 0.23 min at 55.0, 57.5, 60.0, and 62.5°C, respectively. The D-values of Campylobacter ranged from 2.22 min at 55.0°C to 0.19 min at 60.0°C. Salmonella and Campylobacter had similar z-values in chicken livers of 4.8 and 4.6°C, respectively. Chicken livers can be heated to internal temperatures of 70.0 to 73.9°C for at least 1.6 to 0.2 s to achieve a 7-log reduction of Salmonella. Validation tests demonstrated that heating chicken livers to internal temperatures of 70.0 to 73.9°C for 2 to 0 s resulted in a reduction of Salmonella exceeding 7 logs. Collectively, these data show that Salmonella exhibits higher heat resistance than Campylobacter in chicken livers. Therefore, Salmonella could be considered as the target pathogen when designing thermal treatments or cooking instructions for liver products. These findings will aid in designing effective thermal processing for both industrial and home cooking to eliminate Salmonella and Campylobacter, ensuring consumer safety when consuming chicken liver products.


Assuntos
Campylobacter , Galinhas , Microbiologia de Alimentos , Temperatura Alta , Fígado , Salmonella , Animais , Campylobacter/fisiologia , Fígado/microbiologia , Salmonella/fisiologia , Cinética , Culinária
13.
Sensors (Basel) ; 13(2): 2117-30, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23389343

RESUMO

This study demonstrates the applicability of visible-near infrared and thermal imaging for detection of Huanglongbing (HLB) disease in citrus trees. Visible-near infrared (440-900 nm) and thermal infrared spectral reflectance data were collected from individual healthy and HLB-infected trees. Data analysis revealed that the average reflectance values of the healthy trees in the visible region were lower than those in the near infrared region, while the opposite was the case for HLB-infected trees. Moreover, 560 nm, 710 nm, and thermal band showed maximum class separability between healthy and HLB-infected groups among the evaluated visible-infrared bands. Similarly, analysis of several vegetation indices indicated that the normalized difference vegetation index (NDVI), Vogelmann red-edge index (VOG) and modified red-edge simple ratio (mSR) demonstrated good class separability between the two groups. Classification studies using average spectral reflectance values from the visible, near infrared, and thermal bands (13 spectral features) as input features indicated that an average overall classification accuracy of about 87%, with 89% specificity and 85% sensitivity could be achieved with classification models such as support vector machine for trees with symptomatic leaves.


Assuntos
Citrus/microbiologia , Imageamento Tridimensional/métodos , Doenças das Plantas/microbiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Termografia/métodos , Algoritmos , Cor , Imageamento Tridimensional/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Termografia/instrumentação
14.
Front Plant Sci ; 14: 1111575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152173

RESUMO

Introduction: Remote sensing using unmanned aerial systems (UAS) are prevalent for phenomics and precision agricultural applications. The high-resolution data for these applications can provide useful spectral characteristics of crops associated with performance traits such as seed yield. With the recent availability of high-resolution satellite imagery, there has been growing interest in using this technology for plot-scale remote sensing applications, particularly those related to breeding programs. This study compared the features extracted from high-resolution satellite and UAS multispectral imagery (visible and near-infrared) to predict the seed yield from two diverse plot-scale field pea yield trials (advanced breeding and variety testing) using the random forest model. Methods: The multi-modal (spectral and textural features) and multi-scale (satellite and UAS) data fusion approaches were evaluated to improve seed yield prediction accuracy across trials and time points. These approaches included both image fusion, such as pan-sharpening of satellite imagery with UAS imagery using intensity-hue-saturation transformation and additive wavelet luminance proportional approaches, and feature fusion, which involved integrating extracted spectral features. In addition, we also compared the image fusion approach to high-definition satellite data with a resolution of 0.15 m/pixel. The effectiveness of each approach was evaluated with data at both individual and combined time points. Results and discussion: The major findings can be summarized as follows: (1) the inclusion of the texture features did not improve the model performance, (2) the performance of the model using spectral features from satellite imagery at its original resolution can provide similar results as UAS imagery, with variation depending on the field pea yield trial under study and the growth stage, (3) the model performance improved after applying multi-scale, multiple time point feature fusion, (4) the features extracted from the pan-sharpened satellite imagery using intensity-hue-saturation transformation (image fusion) showed better model performance than those with original satellite imagery or high definition imagery, and (5) the green normalized difference vegetation index and transformed triangular vegetation index were identified as key features contributing to high model performance across trials and time points. These findings demonstrate the potential of high-resolution satellite imagery and data fusion approaches for plot-scale phenomics applications.

15.
J Nanosci Nanotechnol ; 12(3): 2346-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755057

RESUMO

Olfactory sensing of specific volatile organic compounds released by bacterial pathogens is one of the unique ways for determining microbial contamination in packaged food products. This study reports the development and evaluation of zinc oxide-iron oxide (ZnO-Fe2O3) nanocomposite sensors to detect low concentrations of butanol, one of the VOCs specific to Salmonella contamination in packaged beef, at low operating temperature (100 degrees C). The ZnO-Fe2O3 sensor was developed using modified Sol-gel method on an interdigitated alumina substrate. The sensor thin film characterization confirmed a uniform layer of ZnO-Fe2O3 thin film formation with ZnO nanorods of 100 nm height. Also, ZnO-Fe2O3 nanocomposite sensor demonstrated repeatable responses and good sensitivity to butanol with an estimated lower detection limit of about 26 ppm at 100 degrees C.

16.
Plant Dis ; 96(11): 1683-1689, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30727463

RESUMO

Laurel wilt, caused by the fungus Raffaelea lauricola, affects the growth, development, and productivity of avocado, Persea americana. This study evaluated the potential of visible-near infrared spectroscopy for non-destructive sensing of this disease. The symptoms of laurel wilt are visually similar to those caused by freeze damage (leaf necrosis). In this work, we performed classification studies with visible-near infrared spectra of asymptomatic and symptomatic leaves from infected plants, as well as leaves from freeze-damaged and healthy plants, both of which were non-infected. The principal component scores computed from principal component analysis were used as input features in four classifiers: linear discriminant analysis, quadratic discriminant analysis (QDA), Naïve-Bayes classifier, and bagged decision trees (BDT). Among the classifiers, QDA and BDT resulted in classification accuracies of higher than 94% when classifying asymptomatic leaves from infected plants. All of the classifiers were able to discriminate symptomatic-infected leaves from freeze-damaged leaves. However, the false negatives mainly resulted from asymptomatic-infected leaves being classified as healthy. Analyses of average vegetation indices of freeze-damaged, healthy (non-infected), asymptomatic-infected, and symptomatic-infected leaves indicated that the normalized difference vegetation index and the simple ratio index were statistically different.

17.
Methods Mol Biol ; 2539: 71-76, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895197

RESUMO

Seed traits can easily be assessed using image processing tools to evaluate differences in crop variety performances in response to environment and stress. In this chapter, we describe a protocol to measure seed traits that can be applied to crops with small grains, including legume grains with little modification. The imaging processing tool can be applied to process a batch of images without human intervention. The method allows evaluation of geometric and color features, and currently extracts 11 seed traits that include number of seeds, seed area, major axis, minor axis, eccentricity, and mean and standard deviation of reflectance in red, green, and blue channels from seed images. Protocols or methods, including the one described in this chapter, facilitate phenotyping seed traits in a high-throughput and automated manner, which can be applied in plant breeding programs and food processing industry to evaluate seed quality.


Assuntos
Melhoramento Vegetal , Sementes , Produtos Agrícolas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fenótipo
18.
HardwareX ; 12: e00344, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36033547

RESUMO

In recent years, applications of volatile organic compounds (VOCs) sensing technologies such as field asymmetric-waveform ion-mobility spectrometry (FAIMS) system in agriculture have accelerated. FAIMS system for VOCs sensing is attractive as it offers high sensitivity, selectivity, real-time monitoring, and portability. However, the development of a robust instrumentation system is needed for precise sampling, high accumulation of VOCs, and careful handling of samples. In this study, we developed a simple semi-automated VOC sampling (SAVS) system using a Raspberry Pi microcontroller, flowmeters, electromechanical solenoid, and cellphone-based app to control cleaning and sampling loops. The system was compared with customized headspace sampling apparatus (CHSA) and validated with a biomarker (acetone) identified to be associated with potato rot development during postharvest storage. The standard error within ion current data across different compensation voltage was lower using the SAVS system than the CHSA. In addition, the maximum peak values across scans displayed a high coefficient of variation using the CHSA (16.23%) than the SAVS system (4.51%). Future work will involve improving system efficiency by adapting multiple sample units, system miniaturization, and automating the flowmeter operation. Such automation is critical to characterize VOCs precisely and automatically across several samples for multiple applications such as pathogen detection, evaluation of crop responses, etc.

19.
Food Chem ; 370: 130910, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34788943

RESUMO

Soft rot and Pythium leak are postharvest storage diseases of potato tubers that can cause substantial crop losses in the US. This study focused on detecting volatile organic compounds (VOCs) associated with rot inoculated tubers during storage (up to 21 days) using headspace solid-phase microextraction (SPME) coupled to gas chromatography (GC) with mass spectrometry (MS) and flame ionization detector (FID) analysis. Russet Burbank and Ranger Russet tubers were inoculated with the rot pathogens. Static sampling with 50 min trapping time followed by GC-MS and GC-FID analysis identified 23 and 30 common VOCs from the pathogen inoculated tubers. Overall, n,n-dimethylmethylamine, acetone, 1-undecene, and styrene, occurred frequently and repeatability in inoculated samples based on GC-MS analysis, with the latter two found using GC-FID analysis as well. Identification of such biomarkers can be useful in developing high-throughput VOC sensing systems for early disease detection in potato storage facilities.


Assuntos
Pythium , Solanum tuberosum , Compostos Orgânicos Voláteis , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise
20.
Front Plant Sci ; 12: 640259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33719318

RESUMO

The Pacific Northwest is an important pulse production region in the United States. Currently, pulse crop (chickpea, lentil, and dry pea) breeders rely on traditional phenotyping approaches to collect performance and agronomic data to support decision making. Traditional phenotyping poses constraints on data availability (e.g., number of locations and frequency of data acquisition) and throughput. In this study, phenomics technologies were applied to evaluate the performance and agronomic traits in two pulse (chickpea and dry pea) breeding programs using data acquired over multiple seasons and locations. An unmanned aerial vehicle-based multispectral imaging system was employed to acquire image data of chickpea and dry pea advanced yield trials from three locations during 2017-2019. The images were analyzed semi-automatically with custom image processing algorithm and features were extracted, such as canopy area and summary statistics associated with vegetation indices. The study demonstrated significant correlations (P < 0.05) between image-based features (e.g., canopy area and sum normalized difference vegetation index) with yield (r up to 0.93 and 0.85 for chickpea and dry pea, respectively), days to 50% flowering (r up to 0.76 and 0.85, respectively), and days to physiological maturity (r up to 0.58 and 0.84, respectively). Using image-based features as predictors, seed yield was estimated using least absolute shrinkage and selection operator regression models, during which, coefficients of determination as high as 0.91 and 0.80 during model testing for chickpea and dry pea, respectively, were achieved. The study demonstrated the feasibility to monitor agronomic traits and predict seed yield in chickpea and dry pea breeding trials across multiple locations and seasons using phenomics tools. Phenomics technologies can assist plant breeders to evaluate the performance of breeding materials more efficiently and accelerate breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA