RESUMO
Recently, a novel type of fast cortical oscillatory activity that occurs between 110 and 160 Hz (high-frequency oscillations (HFO)) was described. HFO are modulated by the theta rhythm in hippocampus and neocortex during active wakefulness and REM sleep. As theta-HFO coupling increases during REM, a role for HFO in memory consolidation has been proposed. However, global properties such as the cortex-wide topographic distribution and the cortico-cortical coherence remain unknown. In this study, we recorded the electroencephalogram during sleep and wakefulness in the rat and analyzed the spatial extent of the HFO band power and coherence. We confirmed that the HFO amplitude is phase-locked to theta oscillations and is modified by behavioral states. During active wakefulness, HFO power was relatively higher in the neocortex and olfactory bulb compared to sleep. HFO power decreased during non-REM and had an intermediate level during REM sleep. Furthermore, coherence was larger during active wakefulness than non-REM, while REM showed a complex pattern in which coherence increased only in intra and decreased in inter-hemispheric combination of electrodes. This coherence pattern is different from gamma (30-100 Hz) coherence, which is reduced during REM sleep. This data show an important HFO cortico-cortical dialog during active wakefulness even when the level of theta comodulation is lower than in REM. In contrast, during REM, this dialog is highly modulated by theta and restricted to intra-hemispheric medial-posterior cortical regions. Further studies combining behavior, electrophysiology and new analytical tools are needed to plunge deeper into the functional significance of the HFO.
Assuntos
Córtex Cerebral/fisiologia , Sono/fisiologia , Ritmo Teta/fisiologia , Vigília/fisiologia , Animais , Eletroencefalografia/métodos , Masculino , Ratos , Ratos WistarRESUMO
The use of Cannabis for medical purposes is rapidly expanding and is usually employed as a self-medication for the treatment of insomnia disorder. However, the effect on sleep seems to depend on multiple factors such as composition of the Cannabis, dosage and route of administration. Vaporization is the recommended route for the administration of Cannabis for medical purposes; however, there is no published research about the effects of vaporized Cannabis on sleep, neither in laboratory animals, nor in humans. Because previous reports suggested that low doses of THC have sedating effects, the aim of the present study was to characterize in rats, the acute effects on sleep induced by the administration of low doses of THC by means of vaporization of a specific type of Cannabis (THC 11.5% and negligible amounts of other cannabinoids). For this purpose, polysomnographic recordings in chronically prepared rats were performed during 6â¯h in the light and dark phases. Animals were treated with 0 (control), 40, 80 and 200â¯mg of Cannabis immediately before the beginning of recordings; the THC plasma concentrations with these doses were low (up to 6.7â¯ng/mL with 200â¯mg). A quantitative EEG analyses by means of the spectral power and coherence estimations was also performed for the highest Cannabis dose. Compared to control, 200â¯mg of Cannabis increased NREM sleep time during the light phase, but only during the first hour of recording. Interestingly, no changes on sleep were observed during the dark (active) phase or with lower doses of Cannabis. Cannabis 200â¯mg also produced EEG power reductions in different cortices, mainly for high frequency bands during W and REM sleep, but only during the light phase. On the contrary, a reduction in the sleep spindles intra-hemispheric coherence was observed during NREM sleep, but only during the dark phase. In conclusion, administration of low doses of THC by vaporization of a specific type of Cannabis produced a small increment of NREM sleep, but only during the light (resting) phase. This was accompanied by subtle modifications of high frequency bands power (during the light phase) and spindle coherence (during the dark phase), which are associated with cognitive processing. Our results reassure the importance of exploring the sleep-promoting properties of Cannabis.
Assuntos
Cannabis , Córtex Cerebral/fisiologia , Sono , Eletroencefalografia , Humanos , Sono REM , VolatilizaçãoRESUMO
In humans, a person's chronotype depends on environmental cues and on individual characteristics, with late chronotypes prevailing in youth. Social jetlag (SJL), the misalignment between an individual׳s biological clock and social time, is higher in late chronotypes. Strong SJL is expected in Uruguayan university students with morning class schedules and very late entertainment activities. Sleep disorders have been reported in Antarctic inhabitants, that might be a response to the extreme environment or to the strictness of Antarctic life. We evaluated, for the first time in Uruguay, the chronotypes and SJL of 17 undergraduate students of the First Uruguayan Summer School on Antarctic Research, using Munich Chronotype Questionnaire (MCTQ) and sleep logs (SL) recorded during 3 phases: pre-Antarctic, Antarctic, and post-Antarctic. The midsleep point of free days corrected for sleep debt on work days (MSFsc,) was used as proxy of individuals' chronotype, whose values (around 6 a.m.) are the latest ever reported. We found a SJL of around 2 h in average, which correlated positively with MSFsc, confirming that late chronotypes generate a higher sleep debt during weekdays. Midsleep point and sleep duration significantly decreased between pre-Antarctic and Antarctic phases, and sleep duration rebounded to significant higher values in the post-Antarctic phase. Waking time, but not sleep onset time, significantly varied among phases. This evidence suggests that sleep schedules more likely depended on the social agenda than on the environmental light-dark shifts. High motivation of students towards Antarctic activities likely induced a subjective perception of welfare non-dependent on sleep duration.